Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors

. 2019 Jan 15 ; 27 (2) : 255-264. [epub] 20181114

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30552009

Grantová podpora
R01 AG057420 NIA NIH HHS - United States
P30 MH075673 NIMH NIH HHS - United States
R01 CA161056 NCI NIH HHS - United States
R01 MH110246 NIMH NIH HHS - United States
P01 MH105280 NIMH NIH HHS - United States
R01 NS093416 NINDS NIH HHS - United States
R25 MH080661 NIMH NIH HHS - United States

Odkazy

PubMed 30552009
PubMed Central PMC6374116
DOI 10.1016/j.bmc.2018.11.022
PII: S0968-0896(18)31611-0
Knihovny.cz E-zdroje

A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.

Zobrazit více v PubMed

Zhou J, Neale JH, Pomper MG, et al., NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat. Rev. Drug Discov 2005;4:1015–1026. PubMed

Ferraris DV, Shukla K, Tsukamoto T, Structure-activity relationships of glutamate carboxypeptidase II (GCPII) inhibitors. Curr. Med. Chem 2012;19:1282–1294. PubMed

Vornov JJ, Hollinger KR, Jackson PF, et al., Still NAAG'ing After All These Years: The Continuing Pursuit of GCPII Inhibitors. Adv Pharmacol. 2016;76:215–255. PubMed

Eiber M, Fendler WP, Rowe SP, et al., Prostate-Specific Membrane Antigen Ligands for Imaging and Therapy. J Nucl Med. 2017;58:67S–76S. PubMed

Rais R, Jiang W, Zhai H, et al., FOLH1/GCPII is elevated in IBD patients, and its inhibition ameliorates murine IBD abnormalities. JCI Insight. 2016;1. PubMed PMC

Kozikowski AP, Nan F, Conti P, et al., Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J. Med. Chem 2001;44:298–301. PubMed

Kozikowski AP, Zhang J, Nan F, et al., Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents. J. Med. Chem 2004;47:1729–1738. PubMed

Olszewski RT, Bukhari N, Zhou J, et al., NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J Neurochem. 2004;89:876–885. PubMed

Mease RC, Dusich CL, Foss CA, et al., N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–3043. PubMed PMC

Olszewski RT, Wegorzewska MM, Monteiro AC, et al., Phencyclidine and dizocilpine induced behaviors reduced by N-acetylaspartylglutamate peptidase inhibition via metabotropic glutamate receptors. Biol Psychiatry. 2008;63:86–91. PubMed PMC

Yamamoto T, Kozikowski A, Zhou J, et al., Intracerebroventricular administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in inflammatory pain. Molecular pain. 2008;4:31. PubMed PMC

Zhang AX, Murelli RP, Barinka C, et al., A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J Am Chem Soc. 2010;132:12711–12716. PubMed PMC

Feng JF, Van KC, Gurkoff GG, et al., Post-injury administration of NAAG peptidase inhibitor prodrug, PGI-02776, in experimental TBI. Brain Res. 2011;1395:62–73. PubMed PMC

Kratochwil C, Giesel FL, Eder M, et al., [(1)(7)(7)Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:987–988. PubMed

Yang X, Mease RC, Pullambhatla M, et al., [(18)F]Fluorobenzoyllysinepentanedioic Acid Carbamates: New Scaffolds for Positron Emission Tomography (PET) Imaging of Prostate-Specific Membrane Antigen (PSMA). J Med Chem. 2016;59:206–218. PubMed PMC

Klusak V, Barinka C, Plechanovova A, et al., Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods. Biochemistry. 2009;48:4126–4138. PubMed PMC

Mlcochova P, Plechanovova A, Barinka C, et al., Mapping of the active site of glutamate carboxypeptidase II by site-directed mutagenesis. FEBS J. 2007;274:4731–4741. PubMed

Plechanovova A, Byun Y, Alquicer G, et al., Novel substrate-based inhibitors of human glutamate carboxypeptidase II with enhanced lipophilicity. J Med Chem. 2011;54:7535–7546. PubMed PMC

Slusher BS, Rojas C, Coyle JT, Chapter 367 - Glutamate Carboxypeptidase II A2 - Rawlings, Neil D, in: Salvesen G (Ed.) Handbook of Proteolytic Enzymes, Academic Press; 2013, pp. 1620–1627.

Barinka C, Byun Y, Dusich CL, et al., Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J Med Chem. 2008;51:7737–7743. PubMed PMC

Kopka K, Benesova M, Barinka C, et al., Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J Nucl Med. 2017;58:17S–26S. PubMed

Gutten O, Bim D, Rezac J, et al., Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology. J Chem Inf Model. 2018;58:48–60. PubMed

Mesters JR, Barinka C, Li W, et al., Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;22:1375–1384. PubMed PMC

Pavlicek J, Ptacek J, Barinka C, Glutamate carboxypeptidase II: an overview of structural studies and their importance for structure-based drug design and deciphering the reaction mechanism of the enzyme. Curr Med Chem. 2012;19:1300–1309. PubMed

Buck SB, Huff JK, Himes RH, et al., Total synthesis and anti-tubulin activity of epi-c3 analogues of cryptophycin-24. J Med Chem. 2004;47:3697–3699. PubMed

Wiesner M, Neff B, Method for the production of bicyclic aromatic amino acids and intermediate products thereof, US 7,371,854, 2008.

Conway RE, Rojas C, Alt J, et al., Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 2016;19:487–500. PubMed

Hlouchova K, Barinka C, Konvalinka J, et al., Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009;276:4448–4462. PubMed

Kabsch W, Xds. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. PubMed PMC

Murshudov GN, Skubak P, Lebedev AA, et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–367. PubMed PMC

Emsley P, Lohkamp B, Scott WG, et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. PubMed PMC

Schuttelkopf AW, van Aalten DM, PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60:1355–1363. PubMed

Chen VB, Arendall WB 3rd, Headd JJ, et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21. PubMed PMC

Navratil M, Tykvart J, Schimer J, et al., Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities. FEBS J. 2016;283:2528–2545. PubMed

Sparta M, Neese F, Chemical applications carried out by local pair natural orbital based coupled-cluster methods. Chem Soc Rev. 2014;43:5032–5041. PubMed

Neese F, The ORCA program system. WIREs Comput Mol Sci. 2012;2:73–78.

Klamt A, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem 1995;99:2224–2235.

Klamt A, Jonas V, Börger T, et al., Refinement and Parametrization of COSMO-RS. J. Phys. Chem 1998;102:5074–5085.

Eichkorn K, Treutler O, Öhm H, et al., Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett 1995;240:283–290.

Grimme S, Antony J, Ehrlich S, et al., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104. PubMed

Klamt A, Schüürmann G, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993:799–805.

Tao J, Perdew JP, Staroverov VN, et al., Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91:146401. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...