Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AG057420
NIA NIH HHS - United States
P30 MH075673
NIMH NIH HHS - United States
R01 CA161056
NCI NIH HHS - United States
R01 MH110246
NIMH NIH HHS - United States
P01 MH105280
NIMH NIH HHS - United States
R01 NS093416
NINDS NIH HHS - United States
R25 MH080661
NIMH NIH HHS - United States
PubMed
30552009
PubMed Central
PMC6374116
DOI
10.1016/j.bmc.2018.11.022
PII: S0968-0896(18)31611-0
Knihovny.cz E-zdroje
- Klíčová slova
- Crystal structure, Glutamate carboxypeptidase II, Metallopeptidase, Prostate-specific membrane antigen,
- MeSH
- buněčné linie MeSH
- Drosophila genetika MeSH
- enzymatické testy MeSH
- glutamátkarboxypeptidasa II antagonisté a inhibitory chemie metabolismus MeSH
- inhibitory proteas chemická syntéza chemie metabolismus MeSH
- karbamáty chemická syntéza chemie metabolismus MeSH
- katalytická doména MeSH
- kvantová teorie MeSH
- lidé MeSH
- močovina analogy a deriváty chemická syntéza chemie metabolismus MeSH
- molekulární modely MeSH
- stereoizomerie MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glutamátkarboxypeptidasa II MeSH
- inhibitory proteas MeSH
- karbamáty MeSH
- močovina MeSH
- ZJ43 MeSH Prohlížeč
A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.
Johns Hopkins Drug Discovery Johns Hopkins University Baltimore MD 21205 United States
McDaniel College 2 College Hill Westminster MD 21157 United States
Zobrazit více v PubMed
Zhou J, Neale JH, Pomper MG, et al., NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nat. Rev. Drug Discov 2005;4:1015–1026. PubMed
Ferraris DV, Shukla K, Tsukamoto T, Structure-activity relationships of glutamate carboxypeptidase II (GCPII) inhibitors. Curr. Med. Chem 2012;19:1282–1294. PubMed
Vornov JJ, Hollinger KR, Jackson PF, et al., Still NAAG'ing After All These Years: The Continuing Pursuit of GCPII Inhibitors. Adv Pharmacol. 2016;76:215–255. PubMed
Eiber M, Fendler WP, Rowe SP, et al., Prostate-Specific Membrane Antigen Ligands for Imaging and Therapy. J Nucl Med. 2017;58:67S–76S. PubMed
Rais R, Jiang W, Zhai H, et al., FOLH1/GCPII is elevated in IBD patients, and its inhibition ameliorates murine IBD abnormalities. JCI Insight. 2016;1. PubMed PMC
Kozikowski AP, Nan F, Conti P, et al., Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J. Med. Chem 2001;44:298–301. PubMed
Kozikowski AP, Zhang J, Nan F, et al., Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents. J. Med. Chem 2004;47:1729–1738. PubMed
Olszewski RT, Bukhari N, Zhou J, et al., NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J Neurochem. 2004;89:876–885. PubMed
Mease RC, Dusich CL, Foss CA, et al., N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–3043. PubMed PMC
Olszewski RT, Wegorzewska MM, Monteiro AC, et al., Phencyclidine and dizocilpine induced behaviors reduced by N-acetylaspartylglutamate peptidase inhibition via metabotropic glutamate receptors. Biol Psychiatry. 2008;63:86–91. PubMed PMC
Yamamoto T, Kozikowski A, Zhou J, et al., Intracerebroventricular administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in inflammatory pain. Molecular pain. 2008;4:31. PubMed PMC
Zhang AX, Murelli RP, Barinka C, et al., A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J Am Chem Soc. 2010;132:12711–12716. PubMed PMC
Feng JF, Van KC, Gurkoff GG, et al., Post-injury administration of NAAG peptidase inhibitor prodrug, PGI-02776, in experimental TBI. Brain Res. 2011;1395:62–73. PubMed PMC
Kratochwil C, Giesel FL, Eder M, et al., [(1)(7)(7)Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:987–988. PubMed
Yang X, Mease RC, Pullambhatla M, et al., [(18)F]Fluorobenzoyllysinepentanedioic Acid Carbamates: New Scaffolds for Positron Emission Tomography (PET) Imaging of Prostate-Specific Membrane Antigen (PSMA). J Med Chem. 2016;59:206–218. PubMed PMC
Klusak V, Barinka C, Plechanovova A, et al., Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods. Biochemistry. 2009;48:4126–4138. PubMed PMC
Mlcochova P, Plechanovova A, Barinka C, et al., Mapping of the active site of glutamate carboxypeptidase II by site-directed mutagenesis. FEBS J. 2007;274:4731–4741. PubMed
Plechanovova A, Byun Y, Alquicer G, et al., Novel substrate-based inhibitors of human glutamate carboxypeptidase II with enhanced lipophilicity. J Med Chem. 2011;54:7535–7546. PubMed PMC
Slusher BS, Rojas C, Coyle JT, Chapter 367 - Glutamate Carboxypeptidase II A2 - Rawlings, Neil D, in: Salvesen G (Ed.) Handbook of Proteolytic Enzymes, Academic Press; 2013, pp. 1620–1627.
Barinka C, Byun Y, Dusich CL, et al., Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J Med Chem. 2008;51:7737–7743. PubMed PMC
Kopka K, Benesova M, Barinka C, et al., Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J Nucl Med. 2017;58:17S–26S. PubMed
Gutten O, Bim D, Rezac J, et al., Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology. J Chem Inf Model. 2018;58:48–60. PubMed
Mesters JR, Barinka C, Li W, et al., Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;22:1375–1384. PubMed PMC
Pavlicek J, Ptacek J, Barinka C, Glutamate carboxypeptidase II: an overview of structural studies and their importance for structure-based drug design and deciphering the reaction mechanism of the enzyme. Curr Med Chem. 2012;19:1300–1309. PubMed
Buck SB, Huff JK, Himes RH, et al., Total synthesis and anti-tubulin activity of epi-c3 analogues of cryptophycin-24. J Med Chem. 2004;47:3697–3699. PubMed
Wiesner M, Neff B, Method for the production of bicyclic aromatic amino acids and intermediate products thereof, US 7,371,854, 2008.
Conway RE, Rojas C, Alt J, et al., Prostate-specific membrane antigen (PSMA)-mediated laminin proteolysis generates a pro-angiogenic peptide. Angiogenesis. 2016;19:487–500. PubMed
Hlouchova K, Barinka C, Konvalinka J, et al., Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. FEBS J. 2009;276:4448–4462. PubMed
Kabsch W, Xds. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. PubMed PMC
Murshudov GN, Skubak P, Lebedev AA, et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355–367. PubMed PMC
Emsley P, Lohkamp B, Scott WG, et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486–501. PubMed PMC
Schuttelkopf AW, van Aalten DM, PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60:1355–1363. PubMed
Chen VB, Arendall WB 3rd, Headd JJ, et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21. PubMed PMC
Navratil M, Tykvart J, Schimer J, et al., Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities. FEBS J. 2016;283:2528–2545. PubMed
Sparta M, Neese F, Chemical applications carried out by local pair natural orbital based coupled-cluster methods. Chem Soc Rev. 2014;43:5032–5041. PubMed
Neese F, The ORCA program system. WIREs Comput Mol Sci. 2012;2:73–78.
Klamt A, Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem 1995;99:2224–2235.
Klamt A, Jonas V, Börger T, et al., Refinement and Parametrization of COSMO-RS. J. Phys. Chem 1998;102:5074–5085.
Eichkorn K, Treutler O, Öhm H, et al., Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett 1995;240:283–290.
Grimme S, Antony J, Ehrlich S, et al., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132:154104. PubMed
Klamt A, Schüürmann G, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993:799–805.
Tao J, Perdew JP, Staroverov VN, et al., Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91:146401. PubMed