-
Je něco špatně v tomto záznamu ?
How the intracellular partitioning of tRNA and tRNA modification enzymes affects mitochondrial function
Z. Paris, JD. Alfonzo,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 GM084065
NIGMS NIH HHS - United States
U01 AI131348
NIAID NIH HHS - United States
PubMed
30358065
DOI
10.1002/iub.1957
Knihovny.cz E-zdroje
- MeSH
- cytoplazma genetika MeSH
- genom mitochondriální genetika MeSH
- intracelulární membrány MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie genetika MeSH
- posttranskripční úpravy RNA genetika MeSH
- proteosyntéza genetika MeSH
- RNA transferová genetika MeSH
- symbióza genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
Organisms have evolved different strategies to seclude certain molecules to specific locations of the cell. This is most pronounced in eukaryotes with their extensive intracellular membrane systems. Intracellular compartmentalization is particularly critical in genome containing organelles, which because of their bacterial evolutionary ancestry still maintain protein-synthesis machinery that resembles more their evolutionary origin than the extant eukaryotic cell they once joined as an endosymbiont. Despite this, it is clear that genome-containing organelles such as the mitochondria are not in isolation and many molecules make it across the mitochondrial membranes from the cytoplasm. In this realm the import of tRNAs and the enzymes that modify them prove most consequential. In this review, we discuss two recent examples of how modifications typically found in cytoplasmic tRNAs affect mitochondrial translation in organisms that forcibly import all their tRNAs from the cytoplasm. In our view, the combination of tRNA import and the compartmentalization of modification enzymes must have played a critical role in the evolution of the organelle. © 2018 IUBMB Life, 70(12):1207-1213, 2018.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034943
- 003
- CZ-PrNML
- 005
- 20191014114200.0
- 007
- ta
- 008
- 191007s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/iub.1957 $2 doi
- 035 __
- $a (PubMed)30358065
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Paris, Zdeněk $u Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
- 245 10
- $a How the intracellular partitioning of tRNA and tRNA modification enzymes affects mitochondrial function / $c Z. Paris, JD. Alfonzo,
- 520 9_
- $a Organisms have evolved different strategies to seclude certain molecules to specific locations of the cell. This is most pronounced in eukaryotes with their extensive intracellular membrane systems. Intracellular compartmentalization is particularly critical in genome containing organelles, which because of their bacterial evolutionary ancestry still maintain protein-synthesis machinery that resembles more their evolutionary origin than the extant eukaryotic cell they once joined as an endosymbiont. Despite this, it is clear that genome-containing organelles such as the mitochondria are not in isolation and many molecules make it across the mitochondrial membranes from the cytoplasm. In this realm the import of tRNAs and the enzymes that modify them prove most consequential. In this review, we discuss two recent examples of how modifications typically found in cytoplasmic tRNAs affect mitochondrial translation in organisms that forcibly import all their tRNAs from the cytoplasm. In our view, the combination of tRNA import and the compartmentalization of modification enzymes must have played a critical role in the evolution of the organelle. © 2018 IUBMB Life, 70(12):1207-1213, 2018.
- 650 _2
- $a cytoplazma $x genetika $7 D003593
- 650 _2
- $a genom mitochondriální $x genetika $7 D054629
- 650 _2
- $a intracelulární membrány $7 D007425
- 650 _2
- $a mitochondrie $x genetika $7 D008928
- 650 _2
- $a mitochondriální membrány $x metabolismus $7 D051336
- 650 _2
- $a proteosyntéza $x genetika $7 D014176
- 650 _2
- $a posttranskripční úpravy RNA $x genetika $7 D012323
- 650 _2
- $a RNA transferová $x genetika $7 D012343
- 650 _2
- $a symbióza $x genetika $7 D013559
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Alfonzo, Juan D $u Department of Microbiology, Ohio State Biochemistry Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- 773 0_
- $w MED00006206 $t IUBMB life $x 1521-6551 $g Roč. 70, č. 12 (2018), s. 1207-1213
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30358065 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191014114624 $b ABA008
- 999 __
- $a ok $b bmc $g 1451603 $s 1073493
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 70 $c 12 $d 1207-1213 $e 20181025 $i 1521-6551 $m IUBMB life $n IUBMB Life $x MED00006206
- GRA __
- $a R01 GM084065 $p NIGMS NIH HHS $2 United States
- GRA __
- $a U01 AI131348 $p NIAID NIH HHS $2 United States
- LZP __
- $a Pubmed-20191007