• Je něco špatně v tomto záznamu ?

A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell

YD. Bansod, T. Matsumoto, K. Nagayama, J. Bursa,

. 2018 ; 140 (10) : . [pub] 20181001

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035120

Mechanical interaction of cell with extracellular environment affects its function. The mechanisms by which mechanical stimuli are sensed and transduced into biochemical responses are still not well understood. Considering this, two finite element (FE) bendo-tensegrity models of a cell in different states are proposed with the aim to characterize cell deformation under different mechanical loading conditions: a suspended cell model elucidating the global response of cell in tensile test simulation and an adherent cell model explicating its local response in atomic force microscopy (AFM) indentation simulation. The force-elongation curve obtained from tensile test simulation lies within the range of experimentally obtained characteristics of smooth muscle cells (SMCs) and illustrates a nonlinear increase in reaction force with cell stretching. The force-indentation curves obtained from indentation simulations lie within the range of experimentally obtained curves of embryonic stem cells (ESCs) and exhibit the influence of indentation site on the overall reaction force of cell. Simulation results have demonstrated that actin filaments (AFs) and microtubules (MTs) play a crucial role in the cell stiffness during stretching, whereas actin cortex (AC) along with actin bundles (ABs) and MTs are essential for the cell rigidity during indentation. The proposed models quantify the mechanical contribution of individual cytoskeletal components to cell mechanics and the deformation of nucleus under different mechanical loading conditions. These results can aid in better understanding of structure-function relationships in living cells.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035120
003      
CZ-PrNML
005      
20191014111102.0
007      
ta
008      
191007s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1115/1.4040246 $2 doi
035    __
$a (PubMed)30029237
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bansod, Yogesh Deepak $u Faculty of Mechanical Engineering (FME), Institute of Solid Mechanics, Mechatronics and Biomechanics (ISMMB), Brno University of Technology (BUT), Technicka 2896/2, Brno 61669, Czech Republic e-mail: .
245    12
$a A Finite Element Bendo-Tensegrity Model of Eukaryotic Cell / $c YD. Bansod, T. Matsumoto, K. Nagayama, J. Bursa,
520    9_
$a Mechanical interaction of cell with extracellular environment affects its function. The mechanisms by which mechanical stimuli are sensed and transduced into biochemical responses are still not well understood. Considering this, two finite element (FE) bendo-tensegrity models of a cell in different states are proposed with the aim to characterize cell deformation under different mechanical loading conditions: a suspended cell model elucidating the global response of cell in tensile test simulation and an adherent cell model explicating its local response in atomic force microscopy (AFM) indentation simulation. The force-elongation curve obtained from tensile test simulation lies within the range of experimentally obtained characteristics of smooth muscle cells (SMCs) and illustrates a nonlinear increase in reaction force with cell stretching. The force-indentation curves obtained from indentation simulations lie within the range of experimentally obtained curves of embryonic stem cells (ESCs) and exhibit the influence of indentation site on the overall reaction force of cell. Simulation results have demonstrated that actin filaments (AFs) and microtubules (MTs) play a crucial role in the cell stiffness during stretching, whereas actin cortex (AC) along with actin bundles (ABs) and MTs are essential for the cell rigidity during indentation. The proposed models quantify the mechanical contribution of individual cytoskeletal components to cell mechanics and the deformation of nucleus under different mechanical loading conditions. These results can aid in better understanding of structure-function relationships in living cells.
650    _2
$a mikrofilamenta $x metabolismus $7 D008841
650    _2
$a biomechanika $7 D001696
650    _2
$a cytoskelet $x metabolismus $7 D003599
650    _2
$a eukaryotické buňky $x cytologie $x metabolismus $7 D005057
650    12
$a analýza metodou konečných prvků $7 D020342
650    12
$a mechanické jevy $7 D055595
650    _2
$a mikrotubuly $x metabolismus $7 D008870
650    12
$a biologické modely $7 D008954
650    _2
$a pevnost v tahu $7 D013718
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Matsumoto, Takeo $u Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan e-mail: .
700    1_
$a Nagayama, Kazuaki $u Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan e-mail: .
700    1_
$a Bursa, Jiri $u Faculty of Mechanical Engineering (FME), Institute of Solid Mechanics, Mechatronics and Biomechanics (ISMMB), Brno University of Technology (BUT), , Brno 61669, Czech Republic e-mail: .
773    0_
$w MED00004544 $t Journal of biomechanical engineering $x 1528-8951 $g Roč. 140, č. 10 (2018)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30029237 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191014111526 $b ABA008
999    __
$a ok $b bmc $g 1451780 $s 1073670
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 140 $c 10 $e 20181001 $i 1528-8951 $m Journal of biomechanical engineering $n J Biomech Eng $x MED00004544
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...