• Something wrong with this record ?

Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products

J. Janata, Z. Kamenik, R. Gazak, S. Kadlcik, L. Najmanova,

. 2018 ; 35 (3) : 257-289. [pub] 20180308

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Covering: up to 2017This review covers the biosynthetic and evolutionary aspects of lincosamide antibiotics, antitumour pyrrolobenzodiazepines (PBDs) and the quorum-sensing molecule hormaomycin. These structurally and functionally diverse groups of complex natural products all incorporate rarely occurring 4-alkyl-l-proline derivatives (APDs) biosynthesized from l-tyrosine through an unusual specialized pathway catalysed by a common set of six proteins named Apd1-Apd6. We give an overview of APD formation, which involves unusual enzyme activities, and its incorporation, which is based either on nonribosomal peptide synthetase (PBDs, hormaomycin) or a unique hybrid ergothioneine-dependent condensation system followed by mycothiol-dependent sulphur atom incorporation (lincosamides). Furthermore, within the public databases, we identified 36 novel unannotated biosynthetic gene clusters that putatively encode the biosynthesis of APD compounds. Their products presumably include novel PBDs, but also novel classes of APD compounds, indicating an unprecedented potential for the diversity enhancement of these functionally versatile complex metabolites. In addition, phylogenetic analysis of known and novel gene clusters for the biosynthesis of APD compounds allowed us to infer novel evolutionary hypotheses: Apd3 methyltransferase originates from a duplication event in a hormaomycin biosynthetic gene cluster ancestor, while putative Apd5 isomerase is evolutionarily linked to PhzF protein from the biosynthesis of phenazines. Lastly, we summarize the achievements in preparing hybrid APD compounds by directing their biosynthesis, and we propose that the number of nature-like APD compounds could by multiplied by replacing l-proline residues in various groups of complex metabolites with APD, i.e. by imitating the natural process that occurs with lincosamides and PBDs, in which the replacement of l-proline for APD has proved to be an evolutionary successful concept.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035362
003      
CZ-PrNML
005      
20211110090651.0
007      
ta
008      
191007s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1039/c7np00047b $2 doi
035    __
$a (PubMed)29517100
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Janata, J $u Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic. janata@biomed.cas.cz.
245    10
$a Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products / $c J. Janata, Z. Kamenik, R. Gazak, S. Kadlcik, L. Najmanova,
520    9_
$a Covering: up to 2017This review covers the biosynthetic and evolutionary aspects of lincosamide antibiotics, antitumour pyrrolobenzodiazepines (PBDs) and the quorum-sensing molecule hormaomycin. These structurally and functionally diverse groups of complex natural products all incorporate rarely occurring 4-alkyl-l-proline derivatives (APDs) biosynthesized from l-tyrosine through an unusual specialized pathway catalysed by a common set of six proteins named Apd1-Apd6. We give an overview of APD formation, which involves unusual enzyme activities, and its incorporation, which is based either on nonribosomal peptide synthetase (PBDs, hormaomycin) or a unique hybrid ergothioneine-dependent condensation system followed by mycothiol-dependent sulphur atom incorporation (lincosamides). Furthermore, within the public databases, we identified 36 novel unannotated biosynthetic gene clusters that putatively encode the biosynthesis of APD compounds. Their products presumably include novel PBDs, but also novel classes of APD compounds, indicating an unprecedented potential for the diversity enhancement of these functionally versatile complex metabolites. In addition, phylogenetic analysis of known and novel gene clusters for the biosynthesis of APD compounds allowed us to infer novel evolutionary hypotheses: Apd3 methyltransferase originates from a duplication event in a hormaomycin biosynthetic gene cluster ancestor, while putative Apd5 isomerase is evolutionarily linked to PhzF protein from the biosynthesis of phenazines. Lastly, we summarize the achievements in preparing hybrid APD compounds by directing their biosynthesis, and we propose that the number of nature-like APD compounds could by multiplied by replacing l-proline residues in various groups of complex metabolites with APD, i.e. by imitating the natural process that occurs with lincosamides and PBDs, in which the replacement of l-proline for APD has proved to be an evolutionary successful concept.
650    _2
$a antibakteriální látky $x chemie $x farmakologie $7 D000900
650    _2
$a protinádorové látky $x chemie $x metabolismus $x farmakologie $7 D000970
650    _2
$a benzodiazepiny $x chemie $x farmakologie $7 D001569
650    _2
$a biologické přípravky $x chemie $x metabolismus $x farmakologie $7 D001688
650    _2
$a cystein $x metabolismus $7 D003545
650    _2
$a depsipeptidy $x chemie $x metabolismus $x farmakologie $7 D047630
650    _2
$a ergothionein $x metabolismus $7 D004880
650    12
$a molekulární evoluce $7 D019143
650    _2
$a glykopeptidy $x metabolismus $7 D006020
650    _2
$a lidé $7 D006801
650    _2
$a inositol $x metabolismus $7 D007294
650    _2
$a linkomycin $x chemie $x farmakologie $7 D008034
650    _2
$a linkosamidy $x biosyntéza $x farmakologie $7 D055231
650    _2
$a molekulární struktura $7 D015394
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Kamenik, Z $u Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic. janata@biomed.cas.cz.
700    1_
$a Gazak, R $u Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic. janata@biomed.cas.cz.
700    1_
$a Kadlcik, S $u Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic. janata@biomed.cas.cz.
700    1_
$a Najmanová, Lucie $u Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic. janata@biomed.cas.cz. $7 xx0266335
773    0_
$w MED00005450 $t Natural product reports $x 1460-4752 $g Roč. 35, č. 3 (2018), s. 257-289
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29517100 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20211110090649 $b ABA008
999    __
$a ok $b bmc $g 1452022 $s 1073912
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 35 $c 3 $d 257-289 $e 20180308 $i 1460-4752 $m Natural product reports $n Nat Prod Rep $x MED00005450
LZP    __
$a Pubmed-20191007

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...