-
Je něco špatně v tomto záznamu ?
The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global "deep red fluorescence"
C. Callieri, V. Slabakova, N. Dzhembekova, N. Slabakova, E. Peneva, PJ. Cabello-Yeves, A. Di Cesare, EM. Eckert, R. Bertoni, G. Corno, MM. Salcher, L. Kamburska, F. Bertoni, S. Moncheva,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
PubMed Central
od 2011
Europe PubMed Central
od 2011 do Před 1 rokem
ProQuest Central
od 2007-05-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2007-05-01 do Před 1 rokem
Oxford Journals Open Access Collection
od 2007
- MeSH
- chlorofyl a metabolismus MeSH
- ekosystém MeSH
- fluorescence MeSH
- fotosyntéza MeSH
- fykoerythrin metabolismus MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- oceány a moře MeSH
- Synechococcus chemie klasifikace izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Černé moře MeSH
- oceány a moře MeSH
The Black Sea is the largest meromictic sea with a reservoir of anoxic water extending from 100 to 1000 m depth. These deeper layers are characterised by a poorly understood fluorescence signal called "deep red fluorescence", a chlorophyll a- (Chl a) like signal found in deep dark oceanic waters. In two cruises, we repeatedly found up to 103 cells ml-1 of picocyanobacteria at 750 m depth in these waters and isolated two phycoerythrin-rich Synechococcus sp. strains (BS55D and BS56D). Tests on BS56D revealed its high adaptability, involving the accumulation of Chl a in anoxic/dark conditions and its capacity to photosynthesise when re-exposed to light. Whole-genome sequencing of the two strains showed the presence of genes that confirms the putative ability of our strains to survive in harsh mesopelagic environments. This discovery provides new evidence to support early speculations associating the "deep red fluorescence" signal to viable picocyanobacteria populations in the deep oxygen-depleted oceans, suggesting a reconsideration of the ecological role of a viable stock of Synechococcus in dark deep waters.
Institute of Oceanology Fridtjof Nansen Bulgarian Academy of Sciences Varna Bulgaria
Museum für Naturkunde Berlin Germany
National Research Council CNR IRSA Microbial Ecology Group Verbania Italy
Sofia University St Kliment Ohridski Faculty of Physics Sofia Bulgaria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19044963
- 003
- CZ-PrNML
- 005
- 20200120085032.0
- 007
- ta
- 008
- 200109s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41396-019-0378-z $2 doi
- 035 __
- $a (PubMed)30820035
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Callieri, Cristiana $u National Research Council CNR-IRSA, Microbial Ecology Group, Verbania, Italy. cristiana.callieri@irsa.cnr.it.
- 245 14
- $a The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global "deep red fluorescence" / $c C. Callieri, V. Slabakova, N. Dzhembekova, N. Slabakova, E. Peneva, PJ. Cabello-Yeves, A. Di Cesare, EM. Eckert, R. Bertoni, G. Corno, MM. Salcher, L. Kamburska, F. Bertoni, S. Moncheva,
- 520 9_
- $a The Black Sea is the largest meromictic sea with a reservoir of anoxic water extending from 100 to 1000 m depth. These deeper layers are characterised by a poorly understood fluorescence signal called "deep red fluorescence", a chlorophyll a- (Chl a) like signal found in deep dark oceanic waters. In two cruises, we repeatedly found up to 103 cells ml-1 of picocyanobacteria at 750 m depth in these waters and isolated two phycoerythrin-rich Synechococcus sp. strains (BS55D and BS56D). Tests on BS56D revealed its high adaptability, involving the accumulation of Chl a in anoxic/dark conditions and its capacity to photosynthesise when re-exposed to light. Whole-genome sequencing of the two strains showed the presence of genes that confirms the putative ability of our strains to survive in harsh mesopelagic environments. This discovery provides new evidence to support early speculations associating the "deep red fluorescence" signal to viable picocyanobacteria populations in the deep oxygen-depleted oceans, suggesting a reconsideration of the ecological role of a viable stock of Synechococcus in dark deep waters.
- 650 _2
- $a chlorofyl a $x metabolismus $7 D000077194
- 650 _2
- $a ekosystém $7 D017753
- 650 _2
- $a fluorescence $7 D005453
- 650 _2
- $a genom bakteriální $7 D016680
- 650 _2
- $a oceány a moře $7 D009792
- 650 _2
- $a fotosyntéza $7 D010788
- 650 _2
- $a fykoerythrin $x metabolismus $7 D010799
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a Synechococcus $x chemie $x klasifikace $x izolace a purifikace $x metabolismus $7 D046940
- 651 _2
- $a Černé moře $7 D059038
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Slabakova, Violeta $u Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria.
- 700 1_
- $a Dzhembekova, Nina $u Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria.
- 700 1_
- $a Slabakova, Nataliya $u Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria.
- 700 1_
- $a Peneva, Elisaveta $u Sofia University "St. Kliment Ohridski", Faculty of Physics, Sofia, Bulgaria.
- 700 1_
- $a Cabello-Yeves, Pedro J $u Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain.
- 700 1_
- $a Di Cesare, Andrea $u National Research Council CNR-IRSA, Microbial Ecology Group, Verbania, Italy.
- 700 1_
- $a Eckert, Ester M $u National Research Council CNR-IRSA, Microbial Ecology Group, Verbania, Italy.
- 700 1_
- $a Bertoni, Roberto $u National Research Council CNR-IRSA, Microbial Ecology Group, Verbania, Italy.
- 700 1_
- $a Corno, Gianluca $u National Research Council CNR-IRSA, Microbial Ecology Group, Verbania, Italy.
- 700 1_
- $a Salcher, Michaela M $u Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Certer CAS, Ceske Budejovice, Czech Republic. Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
- 700 1_
- $a Kamburska, Lyudmila $u Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria.
- 700 1_
- $a Bertoni, Filippo $u Museum für Naturkunde, Berlin, Germany.
- 700 1_
- $a Moncheva, Snejana $u Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria.
- 773 0_
- $w MED00181091 $t The ISME journal $x 1751-7370 $g Roč. 13, č. 7 (2019), s. 1676-1687
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30820035 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200120085408 $b ABA008
- 999 __
- $a ok $b bmc $g 1483232 $s 1083636
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 13 $c 7 $d 1676-1687 $e 20190228 $i 1751-7370 $m The ISME journal $n ISME J $x MED00181091
- LZP __
- $a Pubmed-20200109