The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global "deep red fluorescence"
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30820035
PubMed Central
PMC6776005
DOI
10.1038/s41396-019-0378-z
PII: 10.1038/s41396-019-0378-z
Knihovny.cz E-zdroje
- MeSH
- chlorofyl a metabolismus MeSH
- ekosystém MeSH
- fluorescence MeSH
- fotosyntéza MeSH
- fykoerythrin metabolismus MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- oceány a moře MeSH
- Synechococcus chemie klasifikace izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Černé moře MeSH
- oceány a moře MeSH
- Názvy látek
- chlorofyl a MeSH
- fykoerythrin MeSH
The Black Sea is the largest meromictic sea with a reservoir of anoxic water extending from 100 to 1000 m depth. These deeper layers are characterised by a poorly understood fluorescence signal called "deep red fluorescence", a chlorophyll a- (Chl a) like signal found in deep dark oceanic waters. In two cruises, we repeatedly found up to 103 cells ml-1 of picocyanobacteria at 750 m depth in these waters and isolated two phycoerythrin-rich Synechococcus sp. strains (BS55D and BS56D). Tests on BS56D revealed its high adaptability, involving the accumulation of Chl a in anoxic/dark conditions and its capacity to photosynthesise when re-exposed to light. Whole-genome sequencing of the two strains showed the presence of genes that confirms the putative ability of our strains to survive in harsh mesopelagic environments. This discovery provides new evidence to support early speculations associating the "deep red fluorescence" signal to viable picocyanobacteria populations in the deep oxygen-depleted oceans, suggesting a reconsideration of the ecological role of a viable stock of Synechococcus in dark deep waters.
Institute of Oceanology Fridtjof Nansen Bulgarian Academy of Sciences Varna Bulgaria
Museum für Naturkunde Berlin Germany
National Research Council CNR IRSA Microbial Ecology Group Verbania Italy
Sofia University St Kliment Ohridski Faculty of Physics Sofia Bulgaria
Zobrazit více v PubMed
Broenkow WW, Yuen MA, Yarbrough MA. VERTEX: biological implications of total attenuation and chlorophyll and phycoerythrin fluorescence distributions along a 2000 m deep section in the Gulf of Alaska. Deep Sea Res Part A. 1992;39:417–37. doi: 10.1016/0198-0149(92)90081-4. DOI
Konovalov SK, Murray JW, Luther GW., III Basic processes of Black SeaBiogeochemistry. Oceanography. 2005;18:24–35. doi: 10.5670/oceanog.2005.39. DOI
Murray JW, Top Z, Özsoy E. Hydrographic properties and ventilation of the Black Sea. Deep Sea Res Part A Ocean Res Pap. 1991;38:S663–89. doi: 10.1016/S0198-0149(10)80003-2. DOI
Stanev E, He Y, Grayek S, Boetius A. Oxygen dynamics in the Black Sea as seen by Argo profiling floats. Geophys Res Lett. 2013;40:3085–90. doi: 10.1002/grl.50606. DOI
Stanev EV, He Y, Staneva J, Yakushev E. Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide–Argo float observations and numerical modelling. Biogeosciences. 2014;11:5707–32. doi: 10.5194/bg-11-5707-2014. DOI
Kucuksezgin F, Pazı I. Vertical structure of the chemical properties of western Black Sea. Indian J Mar Sci. 2003;32:314–22.
Zaitsev Y, Mamaev V. Marine biological diversity in the Black Sea. A study of change and decline. United Nation Publications. GEF Black Sea Environ Ser. 1997;3:208.
Anderson JJ. The nitrite-oxygen interface at the top of the oxygen minimum zone in the eastern tropical North Pacific. Deep Sea Res Part A. 1982;29:1193–201. doi: 10.1016/0198-0149(82)90089-9. DOI
Broenkow WW, Lewitus AJ, Yarbrough MA, Krenz RT. Particle fluorescence and bioluminescence distributions in the eastern tropical Pacific. Nature. 1983;302:329–31. doi: 10.1038/302329a0. DOI
Broenkow WW, Lewitus AJ, Yarbrough MA. Spectral observations of pigment fluorescence in intermediate depth waters of the North Pacific. J Mar Res. 1985;43:875–91. doi: 10.1357/002224085788453921. DOI
Breves W, Heuermann R, Reuter R. Enhanced red fluorescence emission in the oxygen minimum zone of the Arabian Sea. Ocean Dynam. 2003;53:86–97. doi: 10.1007/s10236-003-0026-y. DOI
Röttgers R, Koch BP. Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean. Biogeosciences. 2012;9:2585–96. doi: 10.5194/bg-9-2585-2012. DOI
Zhao Z, Gonsior M, Luek J, Timko S, Ianiri H, Hertkorn N, et al. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nat Comm. 2017;8:15284. doi: 10.1038/ncomms15284. PubMed DOI PMC
Organelli E, Barbieux M, Claustre H, Schmechtig C, Poteau A, Bricaud A, et al. Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications. Earth Syst Sci Data. 2017;9:861–80. doi: 10.5194/essd-9-861-2017. DOI
Xing X, Claustre H, Boss E, Roesler C, Organelli E, Poteau A, et al. Correction of profiles of in‐situ chlorophyll fluorometry for the contribution of fluorescence originating from non‐algal matter. Limnol Oceanogr-Meth. 2017;15:80–93. doi: 10.1002/lom3.10144. DOI
Callieri C, Cronberg G, Stockner J. Freshwater Picocyanobacteria: single cells, microcolonies and colonial forms. In: Whitton B, editor. Ecology of Cyanobacteria II: their diversity in time and space. 2nd edn. The Netherlands: Springer Publishers; 2012. pp. 229–69.
Scanlan DJ. Marine Picocyanobacteria. In: Whitton B, editor. Ecology of Cyanobacteria II: their diversity in time and space. 2nd edn. The Netherlands: Springer Publishers; 2012. pp. 503–33.
Sohrin R, Isaji M, Obara Y, Agostini S, Suzuki Y, Hiroe Y, et al. Distribution of Synechococcus in the dark ocean. Aquat Micro Ecol. 2011;64:1–14. doi: 10.3354/ame01508. DOI
Callieri C. Synechococcus plasticity under environmental changes. FEMS Microbiol Lett. 2017;364:fnx229. doi: 10.1093/femsle/fnx229. PubMed DOI
Cottrell MT, Kirchman DL. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol. 2009;75:4958–66. doi: 10.1128/AEM.00117-09. PubMed DOI PMC
Hansen HP. Determination of oxygen. In: Grasshoff K, Kremling K, Ehrhardt m (editors) Methods of seawater analysis, 3rd edn. Germany: Wiley-VCH Verlag GmbH; 2007. p. 75–89.
Grasshoff K, Kremling K, Ehrhardt M. Methods of seawater analysis. Germany: Wiley-VCH Verlag GmbH; 1999. 632 p.
Solorzano L. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr. 1969;14:799–801. doi: 10.4319/lo.1969.14.5.0799. DOI
Cline JD. Spectrophotometric determination of hydrogen sulphide in natural waters. Limnol Oceanogr. 1969;14:454–8. doi: 10.4319/lo.1969.14.3.0454. DOI
Warren GJ. Field sampling using Rosette sampler. USA: U.S. EPA; 1996. pp. 1-186–90.
Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, et al. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol. 2013;85:293–301. doi: 10.1111/1574-6941.12118. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Hyatt D, Chen GL, Locascio PF, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC
Altschul SF, Madden LT, Shaffer A, Zhang J, Zhang Z. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST) Nucleic Acids Res. 2014;42:D206–14. doi: 10.1093/nar/gkt1226. PubMed DOI PMC
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80. doi: 10.1093/nar/gkh063. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–28. doi: 10.1093/nar/29.1.22. PubMed DOI PMC
Haft DH, Brendan JL, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–43. doi: 10.1093/nar/29.1.41. PubMed DOI PMC
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64. doi: 10.1093/nar/25.5.955. PubMed DOI PMC
Nawrocki EP, Eddy SR. Ssu-align: a tool for structural alignment of SSU rRNA sequences. http://eddylab.org/software/ssu-align/, 2010.
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2016;45:D200–3. doi: 10.1093/nar/gkw1129. PubMed DOI PMC
Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304. doi: 10.1038/ncomms3304. PubMed DOI PMC
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. P Natl Acad Sci USA. 2005;102:2567–72. doi: 10.1073/pnas.0409727102. PubMed DOI PMC
Callieri C, Amalfitano S, Corno G, Bertoni R. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol Ecol. 2016;92:fiw154. doi: 10.1093/femsec/fiw154. PubMed DOI
Schreiber U, Bilger W, Schliwa U. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI
Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subj. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI
Repeta D, Simpson D. The distribution and recycling of chlorophyll, bacteriochlorophyll and carotenoids in the Black Sea. Deep-Sea Res. 1991;38:S969–84. doi: 10.1016/S0198-0149(10)80019-6. DOI
Sanchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front Microbiol. 2019;10:45. PubMed PMC
Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol. 2018;20:3757–71. doi: 10.1111/1462-2920.14377. PubMed DOI
Fujita Y, Tsujimoto R, Aoki R. Evolutionary aspects and regulation of tetrapyrrole biosynthesis in cyanobacteria under aerobic and anaerobic environments. Life. 2015;5:1172–203. doi: 10.3390/life5021172. PubMed DOI PMC
Kada S, Koike H, Satoh K, Hase T, Fujita Y. Arrest of chlorophyll synthesis and differential decrease of Photosystems I and II in a cyanobacterial mutant lacking light-independent protochlorophyllide reductase. Plant Mol Biol. 2003;51:225–35. doi: 10.1023/A:1021195226978. PubMed DOI
Aoki R, Hiraide Y, Yamakawa H, Fujita Y. A novel “oxygen-induced” greening process in a cyanobacterial mutant lacking the transcriptional activator ChlR involved in low-oxygen adaptation to tetrapyrrole biosynthesis. J Biol Chem. 2014;289:1841–51. doi: 10.1074/jbc.M113.495358. PubMed DOI PMC
Tanaka R, Tanaka A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta. 2011;1807:968–76. doi: 10.1016/j.bbabio.2011.01.002. PubMed DOI
Armstrong GA. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photoch Photobio B. 1998;43:87–100. doi: 10.1016/S1011-1344(98)00063-3. DOI
Blankenship RE. Molecular evidence for the evolution of photosynthesis. Trends Plant Sci. 2001;6:4–6. doi: 10.1016/S1360-1385(00)01831-8. PubMed DOI
Oren A, Shilo M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol. 1979;122:77–84. doi: 10.1007/BF00408049. DOI
Stal LJ, Moezelaar R. Fermentation in cyanobacteria. FEMS Microbiol Rev. 1997;21:179–211. doi: 10.1016/S0168-6445(97)00056-9. DOI
Scanlan DJ, Ostrowki M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol R. 2009;73:249–99. doi: 10.1128/MMBR.00035-08. PubMed DOI PMC
Yelton AP, Acinas SG, Sunagawa S, Bork P, Pedrós-Alió C, Chisholm SW. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 2016;10:2946–57. doi: 10.1038/ismej.2016.64. PubMed DOI PMC
Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 2014;8:1892–903. doi: 10.1038/ismej.2014.35. PubMed DOI PMC
Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik B, et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008;9:R90. doi: 10.1186/gb-2008-9-5-r90. PubMed DOI PMC
Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 2007;8:R259. doi: 10.1186/gb-2007-8-12-r259. PubMed DOI PMC
Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol. 2003;69:2430–43. doi: 10.1128/AEM.69.5.2430-2443.2003. PubMed DOI PMC
Zaitsev Y. An Introduction to the Black Sea Ecology. Istanbul, Turkey: Odessa: Smil Edition and Publishing Agency; 2008.
Genomic Comparison and Spatial Distribution of Different Synechococcus Phylotypes in the Black Sea