The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global "deep red fluorescence"

. 2019 Jul ; 13 (7) : 1676-1687. [epub] 20190228

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30820035
Odkazy

PubMed 30820035
PubMed Central PMC6776005
DOI 10.1038/s41396-019-0378-z
PII: 10.1038/s41396-019-0378-z
Knihovny.cz E-zdroje

The Black Sea is the largest meromictic sea with a reservoir of anoxic water extending from 100 to 1000 m depth. These deeper layers are characterised by a poorly understood fluorescence signal called "deep red fluorescence", a chlorophyll a- (Chl a) like signal found in deep dark oceanic waters. In two cruises, we repeatedly found up to 103 cells ml-1 of picocyanobacteria at 750 m depth in these waters and isolated two phycoerythrin-rich Synechococcus sp. strains (BS55D and BS56D). Tests on BS56D revealed its high adaptability, involving the accumulation of Chl a in anoxic/dark conditions and its capacity to photosynthesise when re-exposed to light. Whole-genome sequencing of the two strains showed the presence of genes that confirms the putative ability of our strains to survive in harsh mesopelagic environments. This discovery provides new evidence to support early speculations associating the "deep red fluorescence" signal to viable picocyanobacteria populations in the deep oxygen-depleted oceans, suggesting a reconsideration of the ecological role of a viable stock of Synechococcus in dark deep waters.

Zobrazit více v PubMed

Broenkow WW, Yuen MA, Yarbrough MA. VERTEX: biological implications of total attenuation and chlorophyll and phycoerythrin fluorescence distributions along a 2000 m deep section in the Gulf of Alaska. Deep Sea Res Part A. 1992;39:417–37. doi: 10.1016/0198-0149(92)90081-4. DOI

Konovalov SK, Murray JW, Luther GW., III Basic processes of Black SeaBiogeochemistry. Oceanography. 2005;18:24–35. doi: 10.5670/oceanog.2005.39. DOI

Murray JW, Top Z, Özsoy E. Hydrographic properties and ventilation of the Black Sea. Deep Sea Res Part A Ocean Res Pap. 1991;38:S663–89. doi: 10.1016/S0198-0149(10)80003-2. DOI

Stanev E, He Y, Grayek S, Boetius A. Oxygen dynamics in the Black Sea as seen by Argo profiling floats. Geophys Res Lett. 2013;40:3085–90. doi: 10.1002/grl.50606. DOI

Stanev EV, He Y, Staneva J, Yakushev E. Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide–Argo float observations and numerical modelling. Biogeosciences. 2014;11:5707–32. doi: 10.5194/bg-11-5707-2014. DOI

Kucuksezgin F, Pazı I. Vertical structure of the chemical properties of western Black Sea. Indian J Mar Sci. 2003;32:314–22.

Zaitsev Y, Mamaev V. Marine biological diversity in the Black Sea. A study of change and decline. United Nation Publications. GEF Black Sea Environ Ser. 1997;3:208.

Anderson JJ. The nitrite-oxygen interface at the top of the oxygen minimum zone in the eastern tropical North Pacific. Deep Sea Res Part A. 1982;29:1193–201. doi: 10.1016/0198-0149(82)90089-9. DOI

Broenkow WW, Lewitus AJ, Yarbrough MA, Krenz RT. Particle fluorescence and bioluminescence distributions in the eastern tropical Pacific. Nature. 1983;302:329–31. doi: 10.1038/302329a0. DOI

Broenkow WW, Lewitus AJ, Yarbrough MA. Spectral observations of pigment fluorescence in intermediate depth waters of the North Pacific. J Mar Res. 1985;43:875–91. doi: 10.1357/002224085788453921. DOI

Breves W, Heuermann R, Reuter R. Enhanced red fluorescence emission in the oxygen minimum zone of the Arabian Sea. Ocean Dynam. 2003;53:86–97. doi: 10.1007/s10236-003-0026-y. DOI

Röttgers R, Koch BP. Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean. Biogeosciences. 2012;9:2585–96. doi: 10.5194/bg-9-2585-2012. DOI

Zhao Z, Gonsior M, Luek J, Timko S, Ianiri H, Hertkorn N, et al. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nat Comm. 2017;8:15284. doi: 10.1038/ncomms15284. PubMed DOI PMC

Organelli E, Barbieux M, Claustre H, Schmechtig C, Poteau A, Bricaud A, et al. Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications. Earth Syst Sci Data. 2017;9:861–80. doi: 10.5194/essd-9-861-2017. DOI

Xing X, Claustre H, Boss E, Roesler C, Organelli E, Poteau A, et al. Correction of profiles of in‐situ chlorophyll fluorometry for the contribution of fluorescence originating from non‐algal matter. Limnol Oceanogr-Meth. 2017;15:80–93. doi: 10.1002/lom3.10144. DOI

Callieri C, Cronberg G, Stockner J. Freshwater Picocyanobacteria: single cells, microcolonies and colonial forms. In: Whitton B, editor. Ecology of Cyanobacteria II: their diversity in time and space. 2nd edn. The Netherlands: Springer Publishers; 2012. pp. 229–69.

Scanlan DJ. Marine Picocyanobacteria. In: Whitton B, editor. Ecology of Cyanobacteria II: their diversity in time and space. 2nd edn. The Netherlands: Springer Publishers; 2012. pp. 503–33.

Sohrin R, Isaji M, Obara Y, Agostini S, Suzuki Y, Hiroe Y, et al. Distribution of Synechococcus in the dark ocean. Aquat Micro Ecol. 2011;64:1–14. doi: 10.3354/ame01508. DOI

Callieri C. Synechococcus plasticity under environmental changes. FEMS Microbiol Lett. 2017;364:fnx229. doi: 10.1093/femsle/fnx229. PubMed DOI

Cottrell MT, Kirchman DL. Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol. 2009;75:4958–66. doi: 10.1128/AEM.00117-09. PubMed DOI PMC

Hansen HP. Determination of oxygen. In: Grasshoff K, Kremling K, Ehrhardt m (editors) Methods of seawater analysis, 3rd edn. Germany: Wiley-VCH Verlag GmbH; 2007. p. 75–89.

Grasshoff K, Kremling K, Ehrhardt M. Methods of seawater analysis. Germany: Wiley-VCH Verlag GmbH; 1999. 632 p.

Solorzano L. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr. 1969;14:799–801. doi: 10.4319/lo.1969.14.5.0799. DOI

Cline JD. Spectrophotometric determination of hydrogen sulphide in natural waters. Limnol Oceanogr. 1969;14:454–8. doi: 10.4319/lo.1969.14.3.0454. DOI

Warren GJ. Field sampling using Rosette sampler. USA: U.S. EPA; 1996. pp. 1-186–90.

Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, et al. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol. 2013;85:293–301. doi: 10.1111/1574-6941.12118. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Hyatt D, Chen GL, Locascio PF, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC

Altschul SF, Madden LT, Shaffer A, Zhang J, Zhang Z. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST) Nucleic Acids Res. 2014;42:D206–14. doi: 10.1093/nar/gkt1226. PubMed DOI PMC

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80. doi: 10.1093/nar/gkh063. PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–28. doi: 10.1093/nar/29.1.22. PubMed DOI PMC

Haft DH, Brendan JL, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–43. doi: 10.1093/nar/29.1.41. PubMed DOI PMC

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64. doi: 10.1093/nar/25.5.955. PubMed DOI PMC

Nawrocki EP, Eddy SR. Ssu-align: a tool for structural alignment of SSU rRNA sequences. http://eddylab.org/software/ssu-align/, 2010.

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2016;45:D200–3. doi: 10.1093/nar/gkw1129. PubMed DOI PMC

Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304. doi: 10.1038/ncomms3304. PubMed DOI PMC

Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. P Natl Acad Sci USA. 2005;102:2567–72. doi: 10.1073/pnas.0409727102. PubMed DOI PMC

Callieri C, Amalfitano S, Corno G, Bertoni R. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol Ecol. 2016;92:fiw154. doi: 10.1093/femsec/fiw154. PubMed DOI

Schreiber U, Bilger W, Schliwa U. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res. 1986;10:51–62. doi: 10.1007/BF00024185. PubMed DOI

Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subj. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI

Repeta D, Simpson D. The distribution and recycling of chlorophyll, bacteriochlorophyll and carotenoids in the Black Sea. Deep-Sea Res. 1991;38:S969–84. doi: 10.1016/S0198-0149(10)80019-6. DOI

Sanchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front Microbiol. 2019;10:45. PubMed PMC

Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol. 2018;20:3757–71. doi: 10.1111/1462-2920.14377. PubMed DOI

Fujita Y, Tsujimoto R, Aoki R. Evolutionary aspects and regulation of tetrapyrrole biosynthesis in cyanobacteria under aerobic and anaerobic environments. Life. 2015;5:1172–203. doi: 10.3390/life5021172. PubMed DOI PMC

Kada S, Koike H, Satoh K, Hase T, Fujita Y. Arrest of chlorophyll synthesis and differential decrease of Photosystems I and II in a cyanobacterial mutant lacking light-independent protochlorophyllide reductase. Plant Mol Biol. 2003;51:225–35. doi: 10.1023/A:1021195226978. PubMed DOI

Aoki R, Hiraide Y, Yamakawa H, Fujita Y. A novel “oxygen-induced” greening process in a cyanobacterial mutant lacking the transcriptional activator ChlR involved in low-oxygen adaptation to tetrapyrrole biosynthesis. J Biol Chem. 2014;289:1841–51. doi: 10.1074/jbc.M113.495358. PubMed DOI PMC

Tanaka R, Tanaka A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta. 2011;1807:968–76. doi: 10.1016/j.bbabio.2011.01.002. PubMed DOI

Armstrong GA. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photoch Photobio B. 1998;43:87–100. doi: 10.1016/S1011-1344(98)00063-3. DOI

Blankenship RE. Molecular evidence for the evolution of photosynthesis. Trends Plant Sci. 2001;6:4–6. doi: 10.1016/S1360-1385(00)01831-8. PubMed DOI

Oren A, Shilo M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol. 1979;122:77–84. doi: 10.1007/BF00408049. DOI

Stal LJ, Moezelaar R. Fermentation in cyanobacteria. FEMS Microbiol Rev. 1997;21:179–211. doi: 10.1016/S0168-6445(97)00056-9. DOI

Scanlan DJ, Ostrowki M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol R. 2009;73:249–99. doi: 10.1128/MMBR.00035-08. PubMed DOI PMC

Yelton AP, Acinas SG, Sunagawa S, Bork P, Pedrós-Alió C, Chisholm SW. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 2016;10:2946–57. doi: 10.1038/ismej.2016.64. PubMed DOI PMC

Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S, Bergman B, et al. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 2014;8:1892–903. doi: 10.1038/ismej.2014.35. PubMed DOI PMC

Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik B, et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008;9:R90. doi: 10.1186/gb-2008-9-5-r90. PubMed DOI PMC

Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 2007;8:R259. doi: 10.1186/gb-2007-8-12-r259. PubMed DOI PMC

Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol. 2003;69:2430–43. doi: 10.1128/AEM.69.5.2430-2443.2003. PubMed DOI PMC

Zaitsev Y. An Introduction to the Black Sea Ecology. Istanbul, Turkey: Odessa: Smil Edition and Publishing Agency; 2008.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...