Genomic Comparison and Spatial Distribution of Different Synechococcus Phylotypes in the Black Sea
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32903389
PubMed Central
PMC7434838
DOI
10.3389/fmicb.2020.01979
Knihovny.cz E-zdroje
- Klíčová slova
- epipelagic Black Sea, marine Synechococcus spp., mesopelagic Black Sea, qPCR, rpoC1,
- Publikační typ
- časopisecké články MeSH
Picocyanobacteria of the genus Synechococcus are major contributors to global primary production and nutrient cycles due to their oxygenic photoautotrophy, their abundance, and the extensive distribution made possible by their wide-ranging biochemical capabilities. The recent recovery and isolation of strains from the deep euxinic waters of the Black Sea encouraged us to expand our analysis of their adaptability also beyond the photic zone of aquatic environments. To this end, we quantified the total abundance and distribution of Synechococcus along the whole vertical profile of the Black Sea by flow cytometry, and analyzed the data obtained in light of key environmental factors. Furthermore, we designed phylotype-specific primers using the genomes of two new epipelagic coastal strains - first described here - and of two previously described mesopelagic strains, analyzed their presence/abundance by qPCR, and tested this parameter also in metagenomes from two stations at different depths. Together, whole genome sequencing, metagenomics and qPCR techniques provide us with a higher resolution of Synechococcus dynamics in the Black Sea. Both phylotypes analyzed are abundant and successful in epipelagic coastal waters; but while the newly described epipelagic strains are specifically adapted to this environment, the strains previously isolated in mesopelagic waters are able, in low numbers, to withstand the aphotic and oxygen depleted conditions of deep layers. This heterogeneity allows different Synechococcus phylotypes to occupy different niches and underscores the importance of a more detailed characterization of the abundance, distribution, and dynamics of individual populations of these picocyanobacteria.
Biology Centre Czech Academy of Science Institute of Hydrobiology Czechia
Faculty of Physics Sofia University St Kliment Ohridski Sofia Bulgaria
Institute of Oceanology Fridtjof Nansen Bulgarian Academy of Sciences Varna Bulgaria
Zobrazit více v PubMed
Ahlgren N. A., Rocap G. (2006). Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl. Environ. Microbiol. 72 7193–7204. 10.1128/aem.00358-06 PubMed DOI PMC
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. Spec. Rep. 55 611–622. 10.1373/clinchem.2008.112797 PubMed DOI
Cabello-Yeves P. J., Picazo A., Camacho A., Callieri C., Rosselli R., Roda−Garcia J. J., et al. (2018). Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ. Microbiol. 20 3757–3771. 10.1111/1462-2920.14377 PubMed DOI
Callieri C. (2017). Synechococcus plasticity under environmental changes. FEMS Microbiol. Lett. 364:fnx229. PubMed
Callieri C., Coci M., Corno G., Macek M., Modenutti B., Balseiro E., et al. (2013). Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol. Ecol. 85 293–301. 10.1111/1574-6941.12118 PubMed DOI
Callieri C., Cronberg G., Stockner J. (2012). “Freshwater picocyanobacteria: single cells, microcolonies and colonial forms,” in Ecology of Cyanobacteria II: Their Diversity in Time and Space, 2nd Edn, ed. Whitton B. (Dordrecht: Springer Publishers; ), 229–269. 10.1007/978-94-007-3855-3_8 DOI
Callieri C., Slabakova V., Dzhembekova N., Slabakova N., Peneva E., Cabello-Yeves P. J., et al. (2019). The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global “deep red fluorescence”. ISME J. 13 1676–1687. 10.1038/s41396-019-0378-z PubMed DOI PMC
Contreras-Moreira B., Vinuesa P. (2013). GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79 7696–7701. 10.1128/aem.02411-13 PubMed DOI PMC
Di Cesare A., Cabello-Yeves P. J., Chrismas N. A. M., Sánchez-Baracaldo P., Salcher M. M., Callieri C. (2018). Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genomics 19:259. 10.1186/s12864-018-4648-3 PubMed DOI PMC
Di Cesare A., Luna G. M., Vignaroli C., Pasquaroli S., Tota S., Paroncini P., et al. (2013). Aquaculture can promote the presence and spread of antibiotic−resistant enterococci in marine sediments. PLoS One 8:e62838. 10.1371/journal.pone.0062838 PubMed DOI PMC
Dufresne A., Ostrowski M., Scanlan D. J., Garczarek L., Mazard S., Palenik B. P., et al. (2008). Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 9:R90. PubMed PMC
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Edler L. (1979). Recommendations on methods for marine biological studies in the baltic sea. Phytoplankton and Chlorophyll. Baltic Mar. Biol. P 5 1–38.
Farrant G., Doré H., Castillo F., Partensky F., Ratin M., Ostrowski M., et al. (2016). Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 113 E3365–E3374. PubMed PMC
Feyzioglu A. M., Eruz C., Yíldíz Ý. (2015). Geographic variation of Picocyanobacteria Synechococcus spp. along the anatolian coast of the black sea during the Late Autumn of 2013. Turkish J. Fish Aquat. Sci. 15 465–469.
Feyzioglu A. M., Kurt I., Boran M., Sivri N. (2004). Abundance and distribution of Synechococcus spp. in the South-eastern Black Sea during of 2001 summer. Indian J. Mar. Sci. 33 365–368.
Flombaum P., Gallegos J., Gordillo R., Rincón J., Zabala L., Jiao N., et al. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. U.S.A. 110 9824–9829. PubMed PMC
Fox J., Weisberg S. (2019). An R Companion to Applied Regression (Third). Thousand Oaks, CA: Sage.
Fuller N. J., Marie D., Partensky F., Vaulot D., Post A. F., Scanlan D. J. (2003). Clade-specific 16 S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl. Environ. Microbiol. 69 2430–2443. 10.1128/aem.69.5.2430-2443.2003 PubMed DOI PMC
Fuller N. J., Tarran G. A., Yallop M., Orcutt K. M., Scanlan D. J. (2006). Molecular analysis of picocyanobacterial community structure along an Arabian Sea transect reveals distinct spatial separation of lineages. Limnol. Oceanogr. 51 2515–2526. 10.4319/lo.2006.51.6.2515 DOI
Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. (2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57 81–91. 10.1099/ijs.0.64483-0 PubMed DOI
Grasshoff K., Kremling K., Ehrhardt M. (1999). Methods of Seawater Analysis. Weinheim: Wiley-VCH Verlag GmbH.
Haft D. H., Loftus B. J., Richardson D. L., Yang F., Eisen J. A., Paulsen I. T., et al. (2001). TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29 41–43. 10.1093/nar/29.1.41 PubMed DOI PMC
Hyatt D., Chen G. L., Locascio P. F., Larimer F. W., Hauser L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC
Jardillier L., Zubkov M. V., Pearman J., Scanlan D. J. (2010). Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 4 1180–1192. 10.1038/ismej.2010.36 PubMed DOI
Jeffrey S. W., Humphrey G. F. (1975). New spectrophotometric equations for determing chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen. 167 191–194. 10.1016/s0015-3796(17)30778-3 DOI
Jousset A., Bienhold C., Chatzinotas A., Gallien L., Gobet A., Kurm V., et al. (2017). Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11 853–862. 10.1038/ismej.2016.174 PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428 726–731. 10.1016/j.jmb.2015.11.006 PubMed DOI
Kim Y., Jeon J., Kwak M., Kim G., Koh I., Rho M. (2018). Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons. PLoS One 13:e0190266. 10.1371/journal.pone.0190266 PubMed DOI PMC
Konovalov S. K., Murray J. W., Luther G. W., III (2005). Basic processes of Black Sea biogeochemistry. Oceanography 18 24–35. 10.5670/oceanog.2005.39 DOI
Kucuksezgin F., Pazi I. (2003). Vertical structure of the chemical properties of western Black Sea. Indian J. Mar. Sci. 32 314–322.
Larsson J., Celepli N., Ininbergs K., Dupont C. L., Yooseph S., Bergman B., et al. (2014). Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME J. 8 1892–1903. 10.1038/ismej.2014.35 PubMed DOI PMC
Ludwig M., Schulz-Friedrich R., Appel J. (2006). Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J. Mol. Evol. 63 758–768. 10.1007/s00239-006-0001-6 PubMed DOI
Martín-Cuadrado A.-B., Lopez-Garcia P., Alba J.-C., Moreira D., Monticelli L., Strittmatter A., et al. (2007). Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2:e914. 10.1371/journal.pone.0000914 PubMed DOI PMC
Oksanen J., Kindt R., Legendre P., O’Hara B., Stevens M. H. H., Oksanen M. J., et al. (2007). The vegan package. Commun. Ecol. Package 10 631–637.
Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., et al. (2013). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42 D206–D214. PubMed PMC
Palenik B. (1994). Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis. Appl. Environ. Microbiol. 60 3212–3219. 10.1128/aem.60.9.3212-3219.1994 PubMed DOI PMC
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes’. Genome Res. 25 1043–1055. 10.1101/gr.186072.114 PubMed DOI PMC
Sánchez-Baracaldo P. (2015). Origin of marine planktonic cyanobacteria. Sci. Rep. 5:17418. PubMed PMC
Sánchez-Baracaldo P., Bianchini G., Di Cesare A., Callieri C., Chrismas N. A. M. (2019). Insights into the evolution of picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front. Microbiol. 10:45. 10.3389/fmicb.2019.00045 PubMed DOI PMC
Scanlan D. J. (2012). “Marine picocyanobacteria,” in Ecology of Cyanobacteria II: Their Diversity in Time and Space, 2nd Edn, ed. Whitton B. (Dordrecht: Springer Publishers; ), 503–533. 10.1007/978-94-007-3855-3_20 DOI
Scanlan D. J., Ostrowski M., Mazard S., Dufresne A., Garczarek L., Hess W. R., et al. (2009). Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73 249–299. 10.1128/mmbr.00035-08 PubMed DOI PMC
Segata N., Börnigen D., Morgan X. C., Huttenhower C. (2013). PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4:2304. PubMed PMC
Six C., Thomas J. C., Garczarek L., Ostrowski M., Dufresne A., Blot N., et al. (2007). Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biol. 8:R259. PubMed PMC
Sjöstedt J., Martiny J. B. H., Munk P., Riemann L. (2014). Abundance of broad bacterial taxa in the Sargasso Sea explained by environmental conditions but not water mass. Appl. Environ. Microbiol. 80 2786–2795. 10.1128/aem.00099-14 PubMed DOI PMC
Sohm J., Ahlgren N., Thomson Z., Williams C., Moffett J., Saito M., et al. (2016). Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 10 333–345. 10.1038/ismej.2015.115 PubMed DOI PMC
Sohrin R., Isaji M., Obara Y., Agostini S., Suzuki Y., Hiroe Y., et al. (2011). Distribution of Synechococcus in the dark ocean. Aquat. Microb. Ecol. 64 1–14. 10.3354/ame01508 DOI
Solorzano L. (1969). Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14 799–801.
Stanev E. V., He Y., Staneva J., Yakushev E. (2014). Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide-Argo float observations and numerical modelling. Biogeosciences 11 5707–5732. 10.5194/bg-11-5707-2014 DOI
Tai V., Palenik B. (2009). Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J. 3 903–915. 10.1038/ismej.2009.35 PubMed DOI
Tamagnini P., Axelsson R., Lindberg P., Oxelfelt F., Wünschiers R., Lindblad P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66 1–20. 10.1128/mmbr.66.1.1-20.2002 PubMed DOI PMC
Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., et al. (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29 22–28. 10.1093/nar/29.1.22 PubMed DOI PMC
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Res. 40 e115. 10.1093/nar/gks596 PubMed DOI PMC
Uysal Z. (2000). Pigments, size and distribution of Synechococcus spp. in the Black Sea. J. Mar. Sys. 24 313–326. 10.1016/s0924-7963(99)00092-5 DOI
Uysal Z. (2001). Chroococcoid cyanobacteria Synechococcus spp. in the Black Sea: pigments, size, distribution, growth and diurnal variability. J. Plankton. Res. 23 175–190. 10.1093/plankt/23.2.175 PubMed DOI
Uysal Z. (2006). Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, Marmara, Aegean, and eastern Mediterranean seas. Deep Sea Res. Part II 53 1976–1987. 10.1016/j.dsr2.2006.03.016 DOI
Vilibić I., Šantić D. D. (2008). Deep water ventilation traced by Synechococcus cyanobacteria. Ocean Dynam. 58 119–125. 10.1007/s10236-008-0135-8 DOI
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. 10.1186/1471-2105-13-134 PubMed DOI PMC
Zaitsev Y., Mamaev V. (1997). Marine biological diversity in the Black Sea. A study of change and decline. United Nation Publications. GEF Black Sea Environ. Ser. 3:208.
Zwirglmaier K., Jardillier L., Ostrowski M., Mazard S., Garczarek L., Vaulot D., et al. (2008). Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10 147–161. PubMed