• Je něco špatně v tomto záznamu ?

The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water

B. Orman-Ligeza, EC. Morris, B. Parizot, T. Lavigne, A. Babé, A. Ligeza, S. Klein, C. Sturrock, W. Xuan, O. Novák, K. Ljung, MA. Fernandez, PL. Rodriguez, IC. Dodd, I. De Smet, F. Chaumont, H. Batoko, C. Périlleux, JP. Lynch, MJ. Bennett, T....

. 2018 ; 28 (19) : 3165-3173.e5. [pub] 20180927

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045217

Grantová podpora
Biotechnology and Biological Sciences Research Council - United Kingdom

E-zdroje Online Plný text

NLK Cell Press Free Archives od 1995-01-01 do Před 1 rokem
Free Medical Journals od 1995 do Před 1 rokem
Elsevier Open Access Journals od 1995-01-01 do 2023-06-19
Elsevier Open Archive Journals od 1995-01-01 do Před 1 rokem

Efficient soil exploration by roots represents an important target for crop improvement and food security [1, 2]. Lateral root (LR) formation is a key trait for optimizing soil foraging for crucial resources such as water and nutrients. Here, we report an adaptive response termed xerobranching, exhibited by cereal roots, that represses branching when root tips are not in contact with wet soil. Non-invasive X-ray microCT imaging revealed that cereal roots rapidly repress LR formation as they enter an air space within a soil profile and are no longer in contact with water. Transcript profiling of cereal root tips revealed that transient water deficit triggers the abscisic acid (ABA) response pathway. In agreement with this, exogenous ABA treatment can mimic repression of LR formation under transient water deficit. Genetic analysis in Arabidopsis revealed that ABA repression of LR formation requires the PYR/PYL/RCAR-dependent signaling pathway. Our findings suggest that ABA acts as the key signal regulating xerobranching. We conclude that this new ABA-dependent adaptive mechanism allows roots to rapidly respond to changes in water availability in their local micro-environment and to use internal resources efficiently.

Centre for Plant Integrative Biology School of Biosciences University of Nottingham Sutton Bonington LE12 5RD UK

Centre of the Region Haná for Biotechnological and Agricultural Research Laboratory of Growth Regulators Palacký University and Institute of Experimental Botany AS CR Šlechtitelů 11 78371 Olomouc Czech Republic

Department of Forest Genetics and Plant Physiology Umeå Plant Science Centre 901 83 Umeå Sweden

Department of Plant Biotechnology and Bioinformatics Ghent University 9052 Ghent Belgium

Department of Plant Science The Pennsylvania State University University Park PA 16802 USA

Department of Plant Systems Biology VIB 9052 Ghent Belgium

Division of Plant and Crop Sciences School of Biosciences University of Nottingham Leicestershire LE12 5RD UK

Earth and Life Institute Université catholique de Louvain 1348 Louvain la Neuve Belgium

InBioS PhytoSYSTEMS Laboratory of Plant Physiology University of Liège 4000 Liège Belgium

Instituto de Biología Molecular y Celular de Plantas Consejo Superior de Investigaciones Cientificas Universidad Politecnica de Valencia 46022 Valencia Spain

Louvain Institute for Biomolecular Sciences and Technologies Université catholique de Louvain 1348 Louvain la Neuve Belgium

State Key Laboratory of Crop Genetics and Germplasm Enhancement MOA Key Laboratory of Plant Nutrition and Fertilization in Lower Middle Reaches of the Yangtze River Nanjing Agricultural University Nanjing 210095 PR China

The Lancaster Environment Centre Lancaster University LA1 4YQ UK

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045217
003      
CZ-PrNML
005      
20200113081856.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cub.2018.07.074 $2 doi
035    __
$a (PubMed)30270188
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Orman-Ligeza, Beata $u Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.
245    14
$a The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water / $c B. Orman-Ligeza, EC. Morris, B. Parizot, T. Lavigne, A. Babé, A. Ligeza, S. Klein, C. Sturrock, W. Xuan, O. Novák, K. Ljung, MA. Fernandez, PL. Rodriguez, IC. Dodd, I. De Smet, F. Chaumont, H. Batoko, C. Périlleux, JP. Lynch, MJ. Bennett, T. Beeckman, X. Draye,
520    9_
$a Efficient soil exploration by roots represents an important target for crop improvement and food security [1, 2]. Lateral root (LR) formation is a key trait for optimizing soil foraging for crucial resources such as water and nutrients. Here, we report an adaptive response termed xerobranching, exhibited by cereal roots, that represses branching when root tips are not in contact with wet soil. Non-invasive X-ray microCT imaging revealed that cereal roots rapidly repress LR formation as they enter an air space within a soil profile and are no longer in contact with water. Transcript profiling of cereal root tips revealed that transient water deficit triggers the abscisic acid (ABA) response pathway. In agreement with this, exogenous ABA treatment can mimic repression of LR formation under transient water deficit. Genetic analysis in Arabidopsis revealed that ABA repression of LR formation requires the PYR/PYL/RCAR-dependent signaling pathway. Our findings suggest that ABA acts as the key signal regulating xerobranching. We conclude that this new ABA-dependent adaptive mechanism allows roots to rapidly respond to changes in water availability in their local micro-environment and to use internal resources efficiently.
650    _2
$a kyselina abscisová $x metabolismus $7 D000040
650    _2
$a adaptace psychologická $x fyziologie $7 D000223
650    _2
$a Arabidopsis $x genetika $7 D017360
650    _2
$a proteiny huseníčku $x genetika $x metabolismus $7 D029681
650    _2
$a jedlá semena $x růst a vývoj $x metabolismus $7 D002523
650    _2
$a regulace genové exprese u rostlin $x genetika $7 D018506
650    _2
$a meristém $x metabolismus $7 D018519
650    _2
$a organogeneze rostlin $7 D063246
650    _2
$a regulátory růstu rostlin $x metabolismus $7 D010937
650    _2
$a kořeny rostlin $x metabolismus $7 D018517
650    _2
$a geneticky modifikované rostliny $7 D030821
650    _2
$a signální transdukce $7 D015398
650    _2
$a transkripční faktory $x metabolismus $7 D014157
650    _2
$a voda $x metabolismus $7 D014867
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Morris, Emily C $u Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
700    1_
$a Parizot, Boris $u Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.
700    1_
$a Lavigne, Tristan $u Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
700    1_
$a Babé, Aurelie $u Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
700    1_
$a Ligeza, Aleksander $u Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
700    1_
$a Klein, Stephanie $u Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA.
700    1_
$a Sturrock, Craig $u Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
700    1_
$a Xuan, Wei $u State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, PR China.
700    1_
$a Novák, Ondřey $u Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, 901 83 Umeå, Sweden; Centre of the Region Haná for Biotechnological and Agricultural Research, Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
700    1_
$a Ljung, Karin $u Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, 901 83 Umeå, Sweden.
700    1_
$a Fernandez, Maria A $u Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, 46022 Valencia, Spain.
700    1_
$a Rodriguez, Pedro L $u Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, 46022 Valencia, Spain.
700    1_
$a Dodd, Ian C $u The Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK.
700    1_
$a De Smet, Ive $u Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
700    1_
$a Chaumont, Francois $u Louvain Institute for Biomolecular Sciences and Technologies, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
700    1_
$a Batoko, Henri $u Louvain Institute for Biomolecular Sciences and Technologies, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
700    1_
$a Périlleux, Claire $u InBioS - PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, 4000 Liège, Belgium.
700    1_
$a Lynch, Jonathan P $u Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK; Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA.
700    1_
$a Bennett, Malcolm J $u Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
700    1_
$a Beeckman, Tom $u Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium.
700    1_
$a Draye, Xavier $u Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium. Electronic address: xavier.draye@uclouvain.be.
773    0_
$w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 28, č. 19 (2018), s. 3165-3173.e5
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30270188 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200113082228 $b ABA008
999    __
$a ok $b bmc $g 1483486 $s 1083890
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 28 $c 19 $d 3165-3173.e5 $e 20180927 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
GRA    __
$p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...