The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30270188
DOI
10.1016/j.cub.2018.07.074
PII: S0960-9822(18)31004-2
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, abscisic acid, auxin, cereal crops, lateral roots, root system architecture, soil air spaces, water deficit,
- MeSH
- adaptace psychologická fyziologie MeSH
- Arabidopsis genetika MeSH
- geneticky modifikované rostliny MeSH
- jedlá semena růst a vývoj metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyselina abscisová metabolismus MeSH
- meristém metabolismus MeSH
- organogeneze rostlin MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin genetika MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce MeSH
- transkripční faktory metabolismus MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina abscisová MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
- transkripční faktory MeSH
- voda MeSH
Efficient soil exploration by roots represents an important target for crop improvement and food security [1, 2]. Lateral root (LR) formation is a key trait for optimizing soil foraging for crucial resources such as water and nutrients. Here, we report an adaptive response termed xerobranching, exhibited by cereal roots, that represses branching when root tips are not in contact with wet soil. Non-invasive X-ray microCT imaging revealed that cereal roots rapidly repress LR formation as they enter an air space within a soil profile and are no longer in contact with water. Transcript profiling of cereal root tips revealed that transient water deficit triggers the abscisic acid (ABA) response pathway. In agreement with this, exogenous ABA treatment can mimic repression of LR formation under transient water deficit. Genetic analysis in Arabidopsis revealed that ABA repression of LR formation requires the PYR/PYL/RCAR-dependent signaling pathway. Our findings suggest that ABA acts as the key signal regulating xerobranching. We conclude that this new ABA-dependent adaptive mechanism allows roots to rapidly respond to changes in water availability in their local micro-environment and to use internal resources efficiently.
Department of Forest Genetics and Plant Physiology Umeå Plant Science Centre 901 83 Umeå Sweden
Department of Plant Science The Pennsylvania State University University Park PA 16802 USA
Earth and Life Institute Université catholique de Louvain 1348 Louvain la Neuve Belgium
InBioS PhytoSYSTEMS Laboratory of Plant Physiology University of Liège 4000 Liège Belgium
The Lancaster Environment Centre Lancaster University LA1 4YQ UK
Citace poskytuje Crossref.org