Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound

AR. Salgarella, A. Zahoranová, P. Šrámková, M. Majerčíková, E. Pavlova, R. Luxenhofer, J. Kronek, I. Lacík, L. Ricotti,

. 2018 ; 8 (1) : 9893. [pub] 20180702

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
M-ERA.NET Transnational framework, M2Neural Project EC | Seventh Framework Programme (European Union Seventh Framework Programme) - International
M-ERA.NET Transnational framework, M2Neural Project EC | Seventh Framework Programme (European Union Seventh Framework Programme) - International
APVV-14-0858 Agentúra na Podporu Výskumu a Vývoja (Slovak Research and Development Agency) - International
APVV 15-0485 Agentúra na Podporu Výskumu a Vývoja (Slovak Research and Development Agency) - International

Among external stimuli used to trigger release of a drug from a polymeric carrier, ultrasound has gained increasing attention due to its non-invasive nature, safety and low cost. Despite this attention, there is only limited knowledge about how materials available for the preparation of drug carriers respond to ultrasound. This study investigates the effect of ultrasound on the release of a hydrophobic drug, dexamethasone, from poly(2-oxazoline)-based micelles. Spontaneous and ultrasound-mediated release of dexamethasone from five types of micelles made of poly(2-oxazoline) block copolymers, composed of hydrophilic poly(2-methyl-2-oxazoline) and hydrophobic poly(2-n-propyl-2-oxazoline) or poly(2-butyl-2-oxazoline-co-2-(3-butenyl)-2-oxazoline), was studied. The release profiles were fitted by zero-order and Ritger-Peppas models. The ultrasound increased the amount of released dexamethasone by 6% to 105% depending on the type of copolymer, the amount of loaded dexamethasone, and the stimulation time point. This study investigates for the first time the interaction between different poly(2-oxazoline)-based micelle formulations and ultrasound waves, quantifying the efficacy of such stimulation in modulating dexamethasone release from these nanocarriers.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045387
003      
CZ-PrNML
005      
20200113082131.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-018-28140-3 $2 doi
035    __
$a (PubMed)29967422
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Salgarella, Alice Rita $u The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025, Pontedera (Pisa), Italy.
245    10
$a Investigation of drug release modulation from poly(2-oxazoline) micelles through ultrasound / $c AR. Salgarella, A. Zahoranová, P. Šrámková, M. Majerčíková, E. Pavlova, R. Luxenhofer, J. Kronek, I. Lacík, L. Ricotti,
520    9_
$a Among external stimuli used to trigger release of a drug from a polymeric carrier, ultrasound has gained increasing attention due to its non-invasive nature, safety and low cost. Despite this attention, there is only limited knowledge about how materials available for the preparation of drug carriers respond to ultrasound. This study investigates the effect of ultrasound on the release of a hydrophobic drug, dexamethasone, from poly(2-oxazoline)-based micelles. Spontaneous and ultrasound-mediated release of dexamethasone from five types of micelles made of poly(2-oxazoline) block copolymers, composed of hydrophilic poly(2-methyl-2-oxazoline) and hydrophobic poly(2-n-propyl-2-oxazoline) or poly(2-butyl-2-oxazoline-co-2-(3-butenyl)-2-oxazoline), was studied. The release profiles were fitted by zero-order and Ritger-Peppas models. The ultrasound increased the amount of released dexamethasone by 6% to 105% depending on the type of copolymer, the amount of loaded dexamethasone, and the stimulation time point. This study investigates for the first time the interaction between different poly(2-oxazoline)-based micelle formulations and ultrasound waves, quantifying the efficacy of such stimulation in modulating dexamethasone release from these nanocarriers.
650    _2
$a vysokoúčinná kapalinová chromatografie $7 D002851
650    _2
$a dexamethason $x farmakokinetika $7 D003907
650    _2
$a nosiče léků $x chemie $x farmakokinetika $7 D004337
650    _2
$a lékové transportní systémy $x metody $7 D016503
650    _2
$a dynamický rozptyl světla $7 D000067493
650    _2
$a hydrofobní a hydrofilní interakce $7 D057927
650    _2
$a micely $7 D008823
650    _2
$a transmisní elektronová mikroskopie $7 D046529
650    _2
$a oxazoly $x chemie $7 D010080
650    _2
$a polymery $x chemie $7 D011108
650    _2
$a ultrazvuk $x metody $7 D014465
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zahoranová, Anna $u Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
700    1_
$a Šrámková, Petra $u Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
700    1_
$a Majerčíková, Monika $u Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia. Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
700    1_
$a Pavlova, Ewa $u Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
700    1_
$a Luxenhofer, Robert $u Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
700    1_
$a Kronek, Juraj $u Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
700    1_
$a Lacík, Igor $u Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
700    1_
$a Ricotti, Leonardo $u The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025, Pontedera (Pisa), Italy. leonardo.ricotti@santannapisa.it.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 8, č. 1 (2018), s. 9893
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29967422 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200113082503 $b ABA008
999    __
$a ok $b bmc $g 1483656 $s 1084060
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 8 $c 1 $d 9893 $e 20180702 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a M-ERA.NET Transnational framework, M2Neural Project $p EC | Seventh Framework Programme (European Union Seventh Framework Programme) $2 International
GRA    __
$a M-ERA.NET Transnational framework, M2Neural Project $p EC | Seventh Framework Programme (European Union Seventh Framework Programme) $2 International
GRA    __
$a APVV-14-0858 $p Agentúra na Podporu Výskumu a Vývoja (Slovak Research and Development Agency) $2 International
GRA    __
$a APVV 15-0485 $p Agentúra na Podporu Výskumu a Vývoja (Slovak Research and Development Agency) $2 International
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...