• Je něco špatně v tomto záznamu ?

Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing

TEL. Douglas, M. Dziadek, S. Gorodzha, J. Lišková, G. Brackman, V. Vanhoorne, C. Vervaet, L. Balcaen, M. Del Rosario Florez Garcia, AR. Boccaccini, V. Weinhardt, T. Baumbach, F. Vanhaecke, T. Coenye, L. Bačáková, MA. Surmeneva, RA. Surmenev, K....

. 2018 ; 12 (6) : 1313-1326. [pub] 20180423

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19045536

Grantová podpora
NV15-32497A MZ0 CEP - Centrální evidence projektů

Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites.

Centre for Organismal Studies University of Heidelberg Heidelberg Germany Laboratory for Applications of Synchrotron Radiation and Institute for Photon Science and Synchrotron Radiation Karlsruhe Institute of Technology Karlsruhe Germany

Department of Analytical Chemistry Ghent University Ghent Belgium

Department of Biomaterials and Tissue Engineering Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic

Department of Glass Technology and Amorphous Coatings AGH University of Science and Technology Krakow Poland

Department of Molecular Biotechology Ghent University Ghent Belgium Centre for Nano and Biophotonics Ghent University Ghent Belgium

Department of Molecular Biotechology Ghent University Ghent Belgium Engineering Department Lancaster University Lancaster UK Materials Science Institute Lancaster University Lancaster UK

Department of Theoretical and Experimental Physics National Research Tomsk Polytechnic University Tomsk Russia

Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen Nuremberg Erlangen Germany

Laboratory for Applications of Synchrotron Radiation and Institute for Photon Science and Synchrotron Radiation Karlsruhe Institute of Technology Karlsruhe Germany

Laboratory of Pharmaceutical Microbiology Department of Pharmaceutical Analysis Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium

Laboratory of Pharmaceutical Technology Department of Pharmaceutics Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045536
003      
CZ-PrNML
005      
20201109130805.0
007      
ta
008      
200109s2018 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/term.2654 $2 doi
035    __
$a (PubMed)29489058
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Douglas, Timothy E L $u Department of Molecular Biotechology, Ghent University, Ghent, Belgium. Engineering Department, Lancaster University, Lancaster, UK. Materials Science Institute (MSI), Lancaster University, Lancaster, UK.
245    10
$a Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing / $c TEL. Douglas, M. Dziadek, S. Gorodzha, J. Lišková, G. Brackman, V. Vanhoorne, C. Vervaet, L. Balcaen, M. Del Rosario Florez Garcia, AR. Boccaccini, V. Weinhardt, T. Baumbach, F. Vanhaecke, T. Coenye, L. Bačáková, MA. Surmeneva, RA. Surmenev, K. Cholewa-Kowalska, AG. Skirtach,
520    9_
$a Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites.
650    _2
$a antibakteriální látky $x farmakologie $7 D000900
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a keramika $x farmakologie $7 D002516
650    _2
$a sklo $7 D005898
650    _2
$a lidé $7 D006801
650    _2
$a hydrogely $x farmakologie $7 D020100
650    _2
$a injekce $7 D007267
650    _2
$a ionty $7 D007477
650    _2
$a methicilin rezistentní Staphylococcus aureus $x účinky léků $7 D055624
650    _2
$a mikrobiální testy citlivosti $7 D008826
650    _2
$a bakteriální polysacharidy $x farmakologie $7 D011135
650    _2
$a spektroskopie infračervená s Fourierovou transformací $7 D017550
650    _2
$a stroncium $x chemie $7 D013324
650    12
$a rentgenová mikrotomografie $7 D055114
650    _2
$a zinek $x chemie $7 D015032
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dziadek, Michal $u Department of Glass Technology and Amorphous Coatings, AGH University of Science and Technology, Krakow, Poland.
700    1_
$a Gorodzha, Svetlana $u Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk, Russia.
700    1_
$a Lišková, Jana $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Brackman, Gilles $u Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
700    1_
$a Vanhoorne, Valérie $u Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
700    1_
$a Vervaet, Chris $u Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
700    1_
$a Balcaen, Lieve $u Department of Analytical Chemistry, Ghent University, Ghent, Belgium.
700    1_
$a Del Rosario Florez Garcia, Maria $u Department of Analytical Chemistry, Ghent University, Ghent, Belgium.
700    1_
$a Boccaccini, Aldo R $u Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany.
700    1_
$a Weinhardt, Venera $u Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany. Laboratory for Applications of Synchrotron Radiation and Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany.
700    1_
$a Baumbach, Tilo $u Laboratory for Applications of Synchrotron Radiation and Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany.
700    1_
$a Vanhaecke, Frank $u Department of Analytical Chemistry, Ghent University, Ghent, Belgium.
700    1_
$a Coenye, Tom $u Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
700    1_
$a Bačáková, Lucie $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Surmeneva, Maria A $u Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk, Russia.
700    1_
$a Surmenev, Roman A $u Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk, Russia.
700    1_
$a Cholewa-Kowalska, Katarzyna $u Department of Glass Technology and Amorphous Coatings, AGH University of Science and Technology, Krakow, Poland.
700    1_
$a Skirtach, Andre G $u Department of Molecular Biotechology, Ghent University, Ghent, Belgium. Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium.
773    0_
$w MED00163778 $t Journal of tissue engineering and regenerative medicine $x 1932-7005 $g Roč. 12, č. 6 (2018), s. 1313-1326
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29489058 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20201109130804 $b ABA008
999    __
$a ok $b bmc $g 1483804 $s 1084209
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 12 $c 6 $d 1313-1326 $e 20180423 $i 1932-7005 $m Journal of tissue engineering and regenerative medicine $n J. tissue eng. regen. med. $x MED00163778
GRA    __
$a NV15-32497A $p MZ0
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...