-
Je něco špatně v tomto záznamu ?
Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing
TEL. Douglas, M. Dziadek, S. Gorodzha, J. Lišková, G. Brackman, V. Vanhoorne, C. Vervaet, L. Balcaen, M. Del Rosario Florez Garcia, AR. Boccaccini, V. Weinhardt, T. Baumbach, F. Vanhaecke, T. Coenye, L. Bačáková, MA. Surmeneva, RA. Surmenev, K....
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV15-32497A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
Medline Complete (EBSCOhost)
od 2012-01-01
PubMed
29489058
DOI
10.1002/term.2654
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální polysacharidy farmakologie MeSH
- hydrogely farmakologie MeSH
- injekce MeSH
- ionty MeSH
- keramika farmakologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- rentgenová mikrotomografie * MeSH
- sklo MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- stroncium chemie MeSH
- zinek chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045536
- 003
- CZ-PrNML
- 005
- 20201109130805.0
- 007
- ta
- 008
- 200109s2018 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/term.2654 $2 doi
- 035 __
- $a (PubMed)29489058
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Douglas, Timothy E L $u Department of Molecular Biotechology, Ghent University, Ghent, Belgium. Engineering Department, Lancaster University, Lancaster, UK. Materials Science Institute (MSI), Lancaster University, Lancaster, UK.
- 245 10
- $a Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing / $c TEL. Douglas, M. Dziadek, S. Gorodzha, J. Lišková, G. Brackman, V. Vanhoorne, C. Vervaet, L. Balcaen, M. Del Rosario Florez Garcia, AR. Boccaccini, V. Weinhardt, T. Baumbach, F. Vanhaecke, T. Coenye, L. Bačáková, MA. Surmeneva, RA. Surmenev, K. Cholewa-Kowalska, AG. Skirtach,
- 520 9_
- $a Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites.
- 650 _2
- $a antibakteriální látky $x farmakologie $7 D000900
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a keramika $x farmakologie $7 D002516
- 650 _2
- $a sklo $7 D005898
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hydrogely $x farmakologie $7 D020100
- 650 _2
- $a injekce $7 D007267
- 650 _2
- $a ionty $7 D007477
- 650 _2
- $a methicilin rezistentní Staphylococcus aureus $x účinky léků $7 D055624
- 650 _2
- $a mikrobiální testy citlivosti $7 D008826
- 650 _2
- $a bakteriální polysacharidy $x farmakologie $7 D011135
- 650 _2
- $a spektroskopie infračervená s Fourierovou transformací $7 D017550
- 650 _2
- $a stroncium $x chemie $7 D013324
- 650 12
- $a rentgenová mikrotomografie $7 D055114
- 650 _2
- $a zinek $x chemie $7 D015032
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dziadek, Michal $u Department of Glass Technology and Amorphous Coatings, AGH University of Science and Technology, Krakow, Poland.
- 700 1_
- $a Gorodzha, Svetlana $u Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk, Russia.
- 700 1_
- $a Lišková, Jana $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Brackman, Gilles $u Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- 700 1_
- $a Vanhoorne, Valérie $u Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- 700 1_
- $a Vervaet, Chris $u Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- 700 1_
- $a Balcaen, Lieve $u Department of Analytical Chemistry, Ghent University, Ghent, Belgium.
- 700 1_
- $a Del Rosario Florez Garcia, Maria $u Department of Analytical Chemistry, Ghent University, Ghent, Belgium.
- 700 1_
- $a Boccaccini, Aldo R $u Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany.
- 700 1_
- $a Weinhardt, Venera $u Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany. Laboratory for Applications of Synchrotron Radiation and Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- 700 1_
- $a Baumbach, Tilo $u Laboratory for Applications of Synchrotron Radiation and Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- 700 1_
- $a Vanhaecke, Frank $u Department of Analytical Chemistry, Ghent University, Ghent, Belgium.
- 700 1_
- $a Coenye, Tom $u Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- 700 1_
- $a Bačáková, Lucie $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Surmeneva, Maria A $u Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk, Russia.
- 700 1_
- $a Surmenev, Roman A $u Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk, Russia.
- 700 1_
- $a Cholewa-Kowalska, Katarzyna $u Department of Glass Technology and Amorphous Coatings, AGH University of Science and Technology, Krakow, Poland.
- 700 1_
- $a Skirtach, Andre G $u Department of Molecular Biotechology, Ghent University, Ghent, Belgium. Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium.
- 773 0_
- $w MED00163778 $t Journal of tissue engineering and regenerative medicine $x 1932-7005 $g Roč. 12, č. 6 (2018), s. 1313-1326
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29489058 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20201109130804 $b ABA008
- 999 __
- $a ok $b bmc $g 1483804 $s 1084209
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 12 $c 6 $d 1313-1326 $e 20180423 $i 1932-7005 $m Journal of tissue engineering and regenerative medicine $n J. tissue eng. regen. med. $x MED00163778
- GRA __
- $a NV15-32497A $p MZ0
- LZP __
- $a Pubmed-20200109