Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition

L. Vande Walle, IB. Stowe, P. Šácha, BL. Lee, D. Demon, A. Fossoul, F. Van Hauwermeiren, PHV. Saavedra, P. Šimon, V. Šubrt, L. Kostka, CE. Stivala, VC. Pham, ST. Staben, S. Yamazoe, J. Konvalinka, N. Kayagaki, M. Lamkanfi,

. 2019 ; 17 (9) : e3000354. [pub] 20190916

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20005899

The nucleotide-binding-domain (NBD)-and leucine-rich repeat (LRR)-containing (NLR) family, pyrin-domain-containing 3 (NLRP3) inflammasome drives pathological inflammation in a suite of autoimmune, metabolic, malignant, and neurodegenerative diseases. Additionally, NLRP3 gain-of-function point mutations cause systemic periodic fever syndromes that are collectively known as cryopyrin-associated periodic syndrome (CAPS). There is significant interest in the discovery and development of diarylsulfonylurea Cytokine Release Inhibitory Drugs (CRIDs) such as MCC950/CRID3, a potent and selective inhibitor of the NLRP3 inflammasome pathway, for the treatment of CAPS and other diseases. However, drug discovery efforts have been constrained by the lack of insight into the molecular target and mechanism by which these CRIDs inhibit the NLRP3 inflammasome pathway. Here, we show that the NAIP, CIITA, HET-E, and TP1 (NACHT) domain of NLRP3 is the molecular target of diarylsulfonylurea inhibitors. Interestingly, we find photoaffinity labeling (PAL) of the NACHT domain requires an intact (d)ATP-binding pocket and is substantially reduced for most CAPS-associated NLRP3 mutants. In concordance with this finding, MCC950/CRID3 failed to inhibit NLRP3-driven inflammatory pathology in two mouse models of CAPS. Moreover, it abolished circulating levels of interleukin (IL)-1β and IL-18 in lipopolysaccharide (LPS)-challenged wild-type mice but not in Nlrp3L351P knock-in mice and ex vivo-stimulated mutant macrophages. These results identify wild-type NLRP3 as the molecular target of MCC950/CRID3 and show that CAPS-related NLRP3 mutants escape efficient MCC950/CRID3 inhibition. Collectively, this work suggests that MCC950/CRID3-based therapies may effectively treat inflammation driven by wild-type NLRP3 but not CAPS-associated mutants.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20005899
003      
CZ-PrNML
005      
20200525153745.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pbio.3000354 $2 doi
035    __
$a (PubMed)31525186
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Vande Walle, Lieselotte $u Inflammation Research Center, VIB, Ghent, Belgium. Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium. Discovery Sciences, Janssen Research & Development, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium.
245    10
$a MCC950/CRID3 potently targets the NACHT domain of wild-type NLRP3 but not disease-associated mutants for inflammasome inhibition / $c L. Vande Walle, IB. Stowe, P. Šácha, BL. Lee, D. Demon, A. Fossoul, F. Van Hauwermeiren, PHV. Saavedra, P. Šimon, V. Šubrt, L. Kostka, CE. Stivala, VC. Pham, ST. Staben, S. Yamazoe, J. Konvalinka, N. Kayagaki, M. Lamkanfi,
520    9_
$a The nucleotide-binding-domain (NBD)-and leucine-rich repeat (LRR)-containing (NLR) family, pyrin-domain-containing 3 (NLRP3) inflammasome drives pathological inflammation in a suite of autoimmune, metabolic, malignant, and neurodegenerative diseases. Additionally, NLRP3 gain-of-function point mutations cause systemic periodic fever syndromes that are collectively known as cryopyrin-associated periodic syndrome (CAPS). There is significant interest in the discovery and development of diarylsulfonylurea Cytokine Release Inhibitory Drugs (CRIDs) such as MCC950/CRID3, a potent and selective inhibitor of the NLRP3 inflammasome pathway, for the treatment of CAPS and other diseases. However, drug discovery efforts have been constrained by the lack of insight into the molecular target and mechanism by which these CRIDs inhibit the NLRP3 inflammasome pathway. Here, we show that the NAIP, CIITA, HET-E, and TP1 (NACHT) domain of NLRP3 is the molecular target of diarylsulfonylurea inhibitors. Interestingly, we find photoaffinity labeling (PAL) of the NACHT domain requires an intact (d)ATP-binding pocket and is substantially reduced for most CAPS-associated NLRP3 mutants. In concordance with this finding, MCC950/CRID3 failed to inhibit NLRP3-driven inflammatory pathology in two mouse models of CAPS. Moreover, it abolished circulating levels of interleukin (IL)-1β and IL-18 in lipopolysaccharide (LPS)-challenged wild-type mice but not in Nlrp3L351P knock-in mice and ex vivo-stimulated mutant macrophages. These results identify wild-type NLRP3 as the molecular target of MCC950/CRID3 and show that CAPS-related NLRP3 mutants escape efficient MCC950/CRID3 inhibition. Collectively, this work suggests that MCC950/CRID3-based therapies may effectively treat inflammation driven by wild-type NLRP3 but not CAPS-associated mutants.
650    _2
$a zvířata $7 D000818
650    _2
$a periodické syndromy asociované s kryopyrinem $x genetika $7 D056587
650    _2
$a cytokiny $x antagonisté a inhibitory $7 D016207
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a preklinické hodnocení léčiv $7 D004353
650    _2
$a furany $x farmakologie $7 D005663
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a inflamasomy $x antagonisté a inhibitory $7 D058847
650    _2
$a lipopolysacharidy $7 D008070
650    _2
$a makrofágy $x účinky léků $7 D008264
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a protein NLRP3 $x antagonisté a inhibitory $x genetika $7 D000071199
650    _2
$a proteinové domény $7 D000072417
650    _2
$a sulfonamidy $x farmakologie $7 D013449
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Stowe, Irma B $u Department of Physiological Chemistry, Genentech, South San Francisco, California, United States of America.
700    1_
$a Šácha, Pavel $u Institute of Organic Chemistry and Biochemistry of The Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Lee, Bettina L $u Department of Physiological Chemistry, Genentech, South San Francisco, California, United States of America.
700    1_
$a Demon, Dieter $u Inflammation Research Center, VIB, Ghent, Belgium. Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
700    1_
$a Fossoul, Amelie $u Inflammation Research Center, VIB, Ghent, Belgium. Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
700    1_
$a Van Hauwermeiren, Filip $u Inflammation Research Center, VIB, Ghent, Belgium. Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium. Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium.
700    1_
$a Saavedra, Pedro H V $u Inflammation Research Center, VIB, Ghent, Belgium. Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
700    1_
$a Šimon, Petr $u Institute of Organic Chemistry and Biochemistry of The Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Šubrt, Vladimír $u Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague, Czech Republic.
700    1_
$a Kostka, Libor $u Institute of Macromolecular Chemistry, Academy of Science of the Czech Republic, Prague, Czech Republic.
700    1_
$a Stivala, Craig E $u Department of Discovery Chemistry, Genentech, South San Francisco, California, United States of America.
700    1_
$a Pham, Victoria C $u Department of Discovery Chemistry, Genentech, South San Francisco, California, United States of America.
700    1_
$a Staben, Steven T $u Department of Discovery Chemistry, Genentech, South San Francisco, California, United States of America.
700    1_
$a Yamazoe, Sayumi $u Department of Discovery Chemistry, Genentech, South San Francisco, California, United States of America.
700    1_
$a Konvalinka, Jan $u Institute of Organic Chemistry and Biochemistry of The Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Kayagaki, Nobuhiko $u Department of Physiological Chemistry, Genentech, South San Francisco, California, United States of America.
700    1_
$a Lamkanfi, Mohamed $u Inflammation Research Center, VIB, Ghent, Belgium. Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium. Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium.
773    0_
$w MED00008061 $t PLoS biology $x 1545-7885 $g Roč. 17, č. 9 (2019), s. e3000354
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31525186 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200525153744 $b ABA008
999    __
$a ok $b bmc $g 1524757 $s 1095955
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 17 $c 9 $d e3000354 $e 20190916 $i 1545-7885 $m PLoS biology $n Plos Biol $x MED00008061
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...