Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome

H. Malinska, M. Hüttl, O. Oliyarnyk, I. Markova, M. Poruba, Z. Racova, L. Kazdova, R. Vecera,

. 2019 ; 14 (8) : e0220377. [pub] 20190812

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006050

BACKGROUND: Troxerutin (TRX) has a beneficial effect on blood viscosity and platelet aggregation, and is currently used for the treatment of chronic varicosity. Recently, TRX can improve lipid abnormalities, glucose intolerance and oxidative stress in high-fat diet-induced metabolic disorders. In this study, we tested the effect of TRX on metabolic syndrome-associated disorders using a non-obese model of metabolic syndrome-the Hereditary Hypertriglyceridaemic rats (HHTg). METHODS: Adult male HHTg rats were fed standard diet without or with TRX (150 mg/kg bwt/day for 4 weeks). RESULTS: Compared to untreated rats, TRX supplementation in HHTg rats decreased serum glucose (p<0.05) and insulin (p<0.05). Although blood lipids were not affected, TRX decreased hepatic cholesterol concentrations (p<0.01) and reduced gene expression of HMGCR, SREBP2 and SCD1 (p<0.01), involved in cholesterol synthesis and lipid homeostasis. TRX-treated rats exhibited decreased lipoperoxidation and increased activity of antioxidant enzymes SOD and GPx (p<0.05) in the liver. In addition, TRX supplementation increased insulin sensitivity in muscles and epididymal adipose tissue (p<0.05). Elevated serum adiponectin (p<0.05) and decreased muscle triglyceride (p<0.05) helped improve insulin sensitivity. Among the beneficial effects of TRX were changes to cytochrome P450 family enzymes. Hepatic gene expression of CYP4A1, CYP4A3 and CYP5A1 (p<0.01) decreased, while there was a marked elevation in gene expression of CYP1A1 (p<0.01). CONCLUSION: Our results indicate that TRX improves hepatic lipid metabolism and insulin sensitivity in peripheral tissues. As well as ameliorating oxidative stress, TRX can reduce ectopic lipid deposition, affect genes involved in lipid metabolism, and influence the activity of CYP family enzymes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006050
003      
CZ-PrNML
005      
20250618142152.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0220377 $2 doi
035    __
$a (PubMed)31404079
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Malinska, Hana $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
245    10
$a Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome / $c H. Malinska, M. Hüttl, O. Oliyarnyk, I. Markova, M. Poruba, Z. Racova, L. Kazdova, R. Vecera,
520    9_
$a BACKGROUND: Troxerutin (TRX) has a beneficial effect on blood viscosity and platelet aggregation, and is currently used for the treatment of chronic varicosity. Recently, TRX can improve lipid abnormalities, glucose intolerance and oxidative stress in high-fat diet-induced metabolic disorders. In this study, we tested the effect of TRX on metabolic syndrome-associated disorders using a non-obese model of metabolic syndrome-the Hereditary Hypertriglyceridaemic rats (HHTg). METHODS: Adult male HHTg rats were fed standard diet without or with TRX (150 mg/kg bwt/day for 4 weeks). RESULTS: Compared to untreated rats, TRX supplementation in HHTg rats decreased serum glucose (p<0.05) and insulin (p<0.05). Although blood lipids were not affected, TRX decreased hepatic cholesterol concentrations (p<0.01) and reduced gene expression of HMGCR, SREBP2 and SCD1 (p<0.01), involved in cholesterol synthesis and lipid homeostasis. TRX-treated rats exhibited decreased lipoperoxidation and increased activity of antioxidant enzymes SOD and GPx (p<0.05) in the liver. In addition, TRX supplementation increased insulin sensitivity in muscles and epididymal adipose tissue (p<0.05). Elevated serum adiponectin (p<0.05) and decreased muscle triglyceride (p<0.05) helped improve insulin sensitivity. Among the beneficial effects of TRX were changes to cytochrome P450 family enzymes. Hepatic gene expression of CYP4A1, CYP4A3 and CYP5A1 (p<0.01) decreased, while there was a marked elevation in gene expression of CYP1A1 (p<0.01). CONCLUSION: Our results indicate that TRX improves hepatic lipid metabolism and insulin sensitivity in peripheral tissues. As well as ameliorating oxidative stress, TRX can reduce ectopic lipid deposition, affect genes involved in lipid metabolism, and influence the activity of CYP family enzymes.
650    _2
$a zvířata $7 D000818
650    _2
$a modely nemocí na zvířatech $7 D004195
650    _2
$a glukosa $x metabolismus $7 D005947
650    _2
$a glykogen $x metabolismus $7 D006003
650    _2
$a hydroxyethylrutosid $x analogy a deriváty $x terapeutické užití $7 D006896
650    _2
$a hypolipidemika $x terapeutické užití $7 D000960
650    _2
$a inzulinová rezistence $7 D007333
650    _2
$a metabolismus lipidů $x účinky léků $7 D050356
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a metabolický syndrom $x farmakoterapie $7 D024821
650    _2
$a kosterní svaly $x metabolismus $7 D018482
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a inbrední kmeny potkanů $7 D011919
650    _2
$a kvantitativní polymerázová řetězová reakce $7 D060888
650    _2
$a transkriptom $x účinky léků $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hüttl, Martina $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Oliyarnyk, Olena $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Markova, Irena $u Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Poruba, Martin $u Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
700    1_
$a Rácová, Zuzana $u Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. $7 xx0109661
700    1_
$a Kazdová, Ludmila, $d 1938-2025 $u Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. $7 xx0053119
700    1_
$a Vecera, Rostislav $u Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 14, č. 8 (2019), s. e0220377
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31404079 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20250618142143 $b ABA008
999    __
$a ok $b bmc $g 1524908 $s 1096106
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 14 $c 8 $d e0220377 $e 20190812 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...