• Je něco špatně v tomto záznamu ?

Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease

TR. Hope, P. Selnes, I. Rektorová, L. Anderkova, N. Nemcova-Elfmarkova, Z. Balážová, A. Dale, A. Bjørnerud, T. Fladby,

. 2019 ; 14 (5) : e0217922. [pub] 20190531

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006301

To meet the need for Parkinson's disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson's disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson's disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm2. Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm2 (fractional anisotropy (FA), Axial-, Mean- and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson's disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson's disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006301
003      
CZ-PrNML
005      
20220120151431.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0217922 $2 doi
035    __
$a (PubMed)31150514
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hope, Tuva R $u Diagnostic Physics, Division of Radiology & Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
245    10
$a Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease / $c TR. Hope, P. Selnes, I. Rektorová, L. Anderkova, N. Nemcova-Elfmarkova, Z. Balážová, A. Dale, A. Bjørnerud, T. Fladby,
520    9_
$a To meet the need for Parkinson's disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson's disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson's disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm2. Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm2 (fractional anisotropy (FA), Axial-, Mean- and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson's disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson's disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a mozkový kmen $x diagnostické zobrazování $x patologie $7 D001933
650    12
$a diagnostické zobrazování $7 D003952
650    _2
$a difuzní magnetická rezonance $7 D038524
650    12
$a zobrazování difuzních tenzorů $7 D056324
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a šedá hmota $x diagnostické zobrazování $x patologie $7 D066128
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a degenerace nervu $x diagnóza $x diagnostické zobrazování $x patologie $7 D009410
650    _2
$a Parkinsonova nemoc $x diagnóza $x diagnostické zobrazování $x patologie $7 D010300
650    _2
$a substantia nigra $x diagnostické zobrazování $x patologie $7 D013378
650    _2
$a thalamus $x diagnostické zobrazování $x patologie $7 D013788
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Selnes, Per $u Department of Neurology, Akershus University Hospital, Loerenskog, Norway. Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway.
700    1_
$a Rektorová, Irena $u Central European Institute of Technology, CEITEC Masaryk University, Brno, Czech Republic. First Department of Neurology, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
700    1_
$a Anderkova, Lubomira $u Central European Institute of Technology, CEITEC Masaryk University, Brno, Czech Republic.
700    1_
$a Nemcova-Elfmarkova, Nela $u Central European Institute of Technology, CEITEC Masaryk University, Brno, Czech Republic.
700    1_
$a Balážová, Zuzana $u Central European Institute of Technology, CEITEC Masaryk University, Brno, Czech Republic. $7 xx0268742
700    1_
$a Dale, Anders $u Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America. Deparment of Radiology, University of California San Diego, San Diego, La Jolla, California, United States of America. Deparment of Cognitive Sciences, University of California San Diego, San Diego, La Jolla, California, United States of America.
700    1_
$a Bjørnerud, Atle $u Diagnostic Physics, Division of Radiology & Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway. Department of Physics, University of Oslo, Oslo, Norway.
700    1_
$a Fladby, Tormod $u Department of Neurology, Akershus University Hospital, Loerenskog, Norway. Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 14, č. 5 (2019), s. e0217922
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31150514 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20220120151427 $b ABA008
999    __
$a ok $b bmc $g 1525159 $s 1096357
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 14 $c 5 $d e0217922 $e 20190531 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...