Dynamic Functional Connectivity Signifies the Joint Impact of Dance Intervention and Cognitive Reserve
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34566626
PubMed Central
PMC8462054
DOI
10.3389/fnagi.2021.724094
Knihovny.cz E-zdroje
- Klíčová slova
- attention, bottom-up processing, cognitive reserve, coverage, dance intervention, dwell time, dynamic resting-state functional connectivity, top-down processing,
- Publikační typ
- časopisecké články MeSH
Research on dance interventions (DIs) in the elderly has shown promising benefits to physical and cognitive outcomes. The effect of DIs on resting-state functional connectivity (rs-FC) varies, which is possibly due to individual variability. In this study, we assessed the moderation effects of residual cognitive reserve (CR) on DI-induced changes in dynamic rs-FC and their association on cognitive outcomes. Dynamic rs-FC (rs-dFC) and cognitive functions were evaluated in non-demented elderly subjects before and after a 6-month DI (n = 36) and a control group, referred to as the life-as-usual (LAU) group (n = 32). Using linear mixed models and moderation, we examined the interaction effect of DIs and CR on changes in the dwell time and coverage of rs-dFC. Cognitive reserve was calculated as the residual difference between the observed memory performance and the performance predicted by brain state. Partial correlations accounting for CR evaluated the unique association between changes in rs-dFC and cognition in the DI group. In subjects with lower residual CR, we observed DI-induced increases in dwell time [t(58) = -2.14, p = 0.036] and coverage [t(58) = -2.22, p = 0.030] of a rs-dFC state, which was implicated in bottom-up information processing. Increased dwell time was also correlated with a DI-induced improvement in Symbol Search (r = 0.42, p = 0.02). In subjects with higher residual CR, we observed a DI-induced increase in coverage [t(58) = 2.11, p = 0.039] of another rs-dFC state, which was implicated in top-down information processing. The study showed that DIs have a differential and behaviorally relevant effect on dynamic rs-dFC, but these benefits depend on the current CR level.
Department of Gymnastics and Combatives Faculty of Sports Studies Masaryk University Brno Czechia
Department of Health Promotion Faculty of Sports Studies Masaryk University Brno Czechia
Zobrazit více v PubMed
Allen E. A., Damaraju E., Eichele T., Wu L., Calhoun V. D. (2018). EEG signatures of dynamic functional network connectivity states. Brain topography 31 101–116. 10.1007/s10548-017-0546-2 PubMed DOI PMC
Allen E. A., Damaraju E., Plis S. M., Erhardt E. B., Eichele T., Calhoun V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24 663–676. 10.1093/cercor/bhs352 PubMed DOI PMC
Angevaren M., Aufdemkampe G., Verhaar H. J. J., Aleman A., Vanhees L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2:CD005381. PubMed
Calhoun V. D., Adali T., Pearlson G. D., Pekar J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapping 14 140–151. 10.1002/hbm.1048 PubMed DOI PMC
Calhoun V. D., Miller R., Pearlson G., Adalý T. (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84 262–274. 10.1016/j.neuron.2014.10.015 PubMed DOI PMC
Chang C., Liu Z., Chen M. C., Liu X., Duyn J. H. (2013). EEG correlates of time-varying BOLD functional connectivity. Neuroimage 72 227–236. 10.1016/j.neuroimage.2013.01.049 PubMed DOI PMC
Colangeli S., Boccia M., Verde P., Guariglia P., Bianchini F., Piccardi L. (2016). Cognitive reserve in healthy aging and Alzheimer’s disease: a meta-analysis of fMRI studies. Am. J. Alzheimer’s Dis. Other Demen. 31 443–449. 10.1177/1533317516653826 PubMed DOI PMC
Conti L., Riccitelli G. C., Preziosa P., Vizzino C., Marchesi O., Rocca M. A., et al. (2021). Effect of cognitive reserve on structural and functional MRI measures in healthy subjects: a multiparametric assessment. J. Neurol. 268 1780–1791. 10.1007/s00415-020-10331-6 PubMed DOI
Coubard O. A., Duretz S., Lefebvre V., Lapalus P., Ferrufino L. (2011). Practice of contemporary dance improves cognitive flexibility in aging. Front. Aging Neurosci. 3:13. 10.3389/fnagi.2011.00013 PubMed DOI PMC
Craig A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3 655–666. 10.1038/nrn894 PubMed DOI
Critchley H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. J. Comp. Neurol. 493 154–166. 10.1002/cne.20749 PubMed DOI
Decety J., Lamm C. (2006). Human empathy through the lens of social neuroscience. Sci. World J. 6 1146–1163. 10.1100/tsw.2006.221 PubMed DOI PMC
Díez-Cirarda M., Strafella A. P., Kim J., Peña J., Ojeda N., Cabrera-Zubizarreta A., et al. (2018). Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage 17 847–855. 10.1016/j.nicl.2017.12.013 PubMed DOI PMC
Ehlers D. K., Daugherty A. M., Burzynska A. Z., Fanning J., Awick E. A., Chaddock-Heyman L., et al. (2017). Regional brain volumes moderate, but do not mediate, the effects of group-based exercise training on reductions in loneliness in older adults. Front. Aging Neurosci. 9:110. 10.3389/fnagi.2017.00110 PubMed DOI PMC
Fratiglioni L., Paillard-Borg S., Winblad B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3 343–353. 10.1016/s1474-4422(04)00767-7 PubMed DOI
Himberg J., Hyvärinen A., Esposito F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22 1214–1222. 10.1016/j.neuroimage.2004.03.027 PubMed DOI
Huang C. M., Fan Y. T., Lee S. H., Liu H. L., Chen Y. L., Lin C., et al. (2019). Cognitive reserve-mediated neural modulation of emotional control and regulation in people with late-life depression. Soc. Cogn. Affect. Neurosci. 14 849–860. 10.1093/scan/nsz054 PubMed DOI PMC
Humes G. E., Welsh M. C., Retzlaff P., Cookson N. (1997). Towers of hanoi and london: reliability and validity of two executive function tasks. Assessment 4 249–257. 10.1177/107319119700400305 PubMed DOI
Johanidesová S., Bolceková E., Štìpánková H., Preiss M. (2014). Test neverbální fluence-five point test: normativní data pro dospìlé. Èeská Slovenská Neurol. Neurochirurgie 77 704–713.
Joy S., Fein D. (2001). “Meta-analysis: Aging, digit symbol, and symbol copy,” in Poster Presented at the Annual Convention Of The Eastern Psychological Association, Washington, DC.
Kim H., Hong J. P., Kang J. M., Kim W. H., Maeng S., Cho S. E., et al. (2021). Cognitive reserve and the effects of virtual reality−based cognitive training on elderly individuals with mild cognitive impairment and normal cognition. Psychogeriatrics 21 552–559. 10.1111/psyg.12705 PubMed DOI
Kropáčová S., Mitterova K., Klobusiakova P., Brabenec L., Anderkova L., Nemcova-Elfmarkova N., et al. (2019). Cognitive effects of dance-movement intervention in a mixed group of seniors are not dependent on hippocampal atrophy. J. Neural Transm. 126 1455–1463. 10.1007/s00702-019-02068-y PubMed DOI
Li R., Zhu X., Yin S., Niu Y., Zheng Z., Huang X., et al. (2014). Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Front. Aging Neurosci. 6:39. 10.3389/fnagi.2014.00039 PubMed DOI PMC
Li Y. O., Adalý T., Calhoun V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Hum. Brain Mapping 28 1251–1266. 10.1002/hbm.20359 PubMed DOI PMC
Lin Y., Zeng Q., Hu M., Peng G., Luo B.Alzheimer’s Disease Neuroimaging Initiative. (2021). Temporal dynamic changes of intrinsic brain activity associated with cognitive reserve in prodromal Alzheimer’s Disease. J. Alzheimer’s Dis. 81 1285–1294. 10.3233/jad-201244 PubMed DOI
Marks R. (2016). Narrative review of dance-based exercise and its specific impact on depressive symptoms in older adults. AIMS Med. Sci. 3 61–76. 10.3934/medsci.2016.1.61 DOI
McGregor K. M., Crosson B., Krishnamurthy L. C., Krishnamurthy V., Hortman K., Gopinath K., et al. (2018). Effects of a 12-week aerobic spin intervention on resting state networks in previously sedentary older adults. Front. Psychol. 9:2376. 10.3389/fpsyg.2018.02376 PubMed DOI PMC
Meng X., Li G., Jia Y., Liu Y., Shang B., Liu P., et al. (2020). Effects of dance intervention on global cognition, executive function and memory of older adults: a meta-analysis and systematic review. Aging Clin. Exp. Res. 32 7–19. 10.1007/s40520-019-01159-w PubMed DOI
Menon V., Uddin L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214 655–667. 10.1007/s00429-010-0262-0 PubMed DOI PMC
Nasreddine Z. S., Phillips N. A., Bédirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 695–699. 10.1111/j.1532-5415.2005.53221.x PubMed DOI
Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59 2142–2154. 10.1016/j.neuroimage.2011.10.018 PubMed DOI PMC
Premi E., Gazzina S., Diano M., Girelli A., Calhoun V. D., Iraji A., et al. (2020). Enhanced dynamic functional connectivity (whole-brain chronnectome) in chess experts. Sci. Rep. 10 1–8. PubMed PMC
Qi M., Zhu Y., Zhang L., Wu T., Wang J. (2019). The effect of aerobic dance intervention on brain spontaneous activity in older adults with mild cognitive impairment: a resting-state functional MRI study. Exp. Ther. Med. 17 715–722. PubMed PMC
Reed B. R., Mungas D., Farias S. T., Harvey D., Beckett L., Widaman K., et al. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 133 2196–2209. 10.1093/brain/awq154 PubMed DOI PMC
Rehfeld K., Lüders A., Hökelmann A., Lessmann V., Kaufmann J., Brigadski T., et al. (2018). Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS One 13:e0196636. 10.1371/journal.pone.0196636 PubMed DOI PMC
Rodrigues-Krause J., Farinha J. B., Krause M., Reischak-Oliveira Á. (2016). Effects of dance interventions on cardiovascular risk with ageing: systematic review and meta-analysis. Complement. Ther. Med. 29 16–28. 10.1016/j.ctim.2016.09.004 PubMed DOI
Rosano C., Venkatraman V. K., Guralnik J., Newman A. B., Glynn N. W., Launer L., et al. (2010). Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. J. Gerontol. Ser. A 65 639–647. 10.1093/gerona/glq038 PubMed DOI PMC
Seeley W. W., Menon V., Schatzberg A. F., Keller J., Glover G. H., Kenna H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27 2349–2356. 10.1523/jneurosci.5587-06.2007 PubMed DOI PMC
Šejnoha Minsterová A., Klobusiakova P., Kropacova S., Novakova L., Brabenec L., Balazova Z., et al. (2020). Multishell diffusion MRI reflects improved physical fitness induced by dance intervention. Neural Plasticity 2020:8836925. PubMed PMC
Shakil S., Lee C. H., Keilholz S. D. (2016). Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. Neuroimage 133 111–128. 10.1016/j.neuroimage.2016.02.074 PubMed DOI PMC
Song S., Zilverstand A., Song H., Uquillas F. D. O., Wang Y., Xie C., et al. (2017). The influence of emotional interference on cognitive control: a meta-analysis of neuroimaging studies using the emotional Stroop task. Sci. Rep. 7 1–9. PubMed PMC
Steffener J., Stern Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1822 467–473. 10.1016/j.bbadis.2011.09.012 PubMed DOI PMC
Stern Y., Gazes Y., Razlighi Q., Steffener J., Habeck C. (2018). A task-invariant cognitive reserve network. Neuroimage 178 36–45. 10.1016/j.neuroimage.2018.05.033 PubMed DOI PMC
Tucha L., Aschenbrenner S., Koerts J., Lange K. W. (2012). The five-point test: reliability, validity and normative data for children and adults. PLoS One 7:e46080. 10.1371/journal.pone.0046080 PubMed DOI PMC
Uddin L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16 55–61. 10.1038/nrn3857 PubMed DOI
Voss M. W., Prakash R. S., Erickson K., I, Basak C., Chaddock L., Kim J. S., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2:32. 10.3389/fnagi.2010.00032 PubMed DOI PMC
Warrington E. K., Taylor A. M. (1973). The contribution of the right parietal lobe to object recognition. Cortex 9 152–164. 10.1016/s0010-9452(73)80024-3 PubMed DOI
Wechsler D. (1997). Wechsler Memory Scale-III Manual. San Antonio, TX: Psychological Corporation.