• Je něco špatně v tomto záznamu ?

Nuclear transport of nicotinamide phosphoribosyltransferase is cell cycle-dependent in mammalian cells, and its inhibition slows cell growth

P. Svoboda, E. Krizova, S. Sestakova, K. Vapenkova, Z. Knejzlik, S. Rimpelova, D. Rayova, N. Volfova, I. Krizova, M. Rumlova, D. Sykora, R. Kizek, M. Haluzik, V. Zidek, J. Zidkova, V. Skop,

. 2019 ; 294 (22) : 8676-8689. [pub] 20190411

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006465

Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006465
003      
CZ-PrNML
005      
20200519204457.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.RA118.003505 $2 doi
035    __
$a (PubMed)30975903
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Svoboda, Petr $u From the Departments of Biochemistry and Microbiology. the Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.
245    10
$a Nuclear transport of nicotinamide phosphoribosyltransferase is cell cycle-dependent in mammalian cells, and its inhibition slows cell growth / $c P. Svoboda, E. Krizova, S. Sestakova, K. Vapenkova, Z. Knejzlik, S. Rimpelova, D. Rayova, N. Volfova, I. Krizova, M. Rumlova, D. Sykora, R. Kizek, M. Haluzik, V. Zidek, J. Zidkova, V. Skop,
520    9_
$a Nicotinamide phosphoribosyltransferase (NAMPT) is located in both the nucleus and cytoplasm and has multiple biological functions including catalyzing the rate-limiting step in NAD synthesis. Moreover, up-regulated NAMPT expression has been observed in many cancers. However, the determinants and regulation of NAMPT's nuclear transport are not known. Here, we constructed a GFP-NAMPT fusion protein to study NAMPT's subcellular trafficking. We observed that in unsynchronized 3T3-L1 preadipocytes, 25% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 62% had higher GFP-NAMPT fluorescence in the nucleus. In HepG2 hepatocytes, 6% of cells had higher GFP-NAMPT fluorescence in the cytoplasm, and 84% had higher GFP-NAMPT fluorescence in the nucleus. In both 3T3-L1 and HepG2 cells, GFP-NAMPT was excluded from the nucleus immediately after mitosis and migrated back into it as the cell cycle progressed. In HepG2 cells, endogenous, untagged NAMPT displayed similar changes with the cell cycle, and in nonmitotic cells, GFP-NAMPT accumulated in the nucleus. Similarly, genotoxic, oxidative, or dicarbonyl stress also caused nuclear NAMPT localization. These interventions also increased poly(ADP-ribosyl) polymerase and sirtuin activity, suggesting an increased cellular demand for NAD. We identified a nuclear localization signal in NAMPT and amino acid substitution in this sequence (424RSKK to ASGA), which did not affect its enzymatic activity, blocked nuclear NAMPT transport, slowed cell growth, and increased histone H3 acetylation. These results suggest that NAMPT is transported into the nucleus where it presumably increases NAD synthesis required for cell proliferation. We conclude that specific inhibition of NAMPT transport into the nucleus might be a potential avenue for managing cancer.
650    _2
$a buňky 3T3-L1 $7 D041721
650    _2
$a akrylamidy $x farmakologie $7 D000178
650    _2
$a aktivní transport - buněčné jádro $7 D021581
650    _2
$a zvířata $7 D000818
650    _2
$a kontrolní body buněčného cyklu $7 D059447
650    _2
$a buněčné jádro $x metabolismus $7 D002467
650    _2
$a proliferace buněk $7 D049109
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a cytoplazma $x metabolismus $7 D003593
650    _2
$a buňky Hep G2 $7 D056945
650    _2
$a histony $x metabolismus $7 D006657
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a mutageneze cílená $7 D016297
650    _2
$a NAD $x metabolismus $7 D009243
650    _2
$a nikotinamidfosforibosyltransferasa $x chemie $x genetika $x metabolismus $7 D054409
650    _2
$a oxidační stres $7 D018384
650    _2
$a piperidiny $x farmakologie $7 D010880
650    _2
$a poly(ADP-ribosa)-polymerasy $x metabolismus $7 D011065
650    _2
$a rekombinantní fúzní proteiny $x chemie $x genetika $x metabolismus $7 D011993
650    _2
$a sirtuiny $x metabolismus $7 D037761
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Krizova, Edita $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Sestakova, Sarka $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Vapenkova, Kamila $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Knejzlik, Zdenek $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Rimpelova, Silvie $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Rayova, Diana $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Volfova, Nikol $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Krizova, Ivana $u Biotechnology, and.
700    1_
$a Rumlova, Michaela $u Biotechnology, and.
700    1_
$a Sykora, David $u Analytical Chemistry, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic.
700    1_
$a Kizek, Rene $u the Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, 612 42, Czech Republic.
700    1_
$a Haluzik, Martin $u the Centre for Experimental Medicine and. Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague 4, 140 21, Czech Republic, and. the Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital in Prague, Prague 2, 128 08, Czech Republic.
700    1_
$a Zidek, Vaclav $u the Institute of Physiology, Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.
700    1_
$a Zidkova, Jarmila $u From the Departments of Biochemistry and Microbiology.
700    1_
$a Skop, Vojtech $u From the Departments of Biochemistry and Microbiology, skopv@vscht.cz. the Centre for Experimental Medicine and.
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 294, č. 22 (2019), s. 8676-8689
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30975903 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200519204453 $b ABA008
999    __
$a ok $b bmc $g 1525323 $s 1096521
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 294 $c 22 $d 8676-8689 $e 20190411 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...