• Je něco špatně v tomto záznamu ?

Partitioning of mesophyll conductance for CO2 into intercellular and cellular components using carbon isotope composition of cuticles from opposite leaf sides

J. Šantrůček, L. Schreiber, J. Macková, M. Vráblová, J. Květoň, P. Macek, J. Neuwirthová,

. 2019 ; 141 (1) : 33-51. [pub] 20190226

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006564
E-zdroje Online Plný text

NLK ProQuest Central od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-01-01 do Před 1 rokem

We suggest a new technique for estimating the relative drawdown of CO2 concentration (c) in the intercellular air space (IAS) across hypostomatous leaves (expressed as the ratio cd/cb, where the indexes d and b denote the adaxial and abaxial edges, respectively, of IAS), based on the carbon isotope composition (δ13C) of leaf cuticular membranes (CMs), cuticular waxes (WXs) or epicuticular waxes (EWXs) isolated from opposite leaf sides. The relative drawdown in the intracellular liquid phase (i.e., the ratio cc/cbd, where cc and cbd stand for mean CO2 concentrations in chloroplasts and in the IAS), the fraction of intercellular resistance in the total mesophyll resistance (rIAS/rm), leaf thickness, and leaf mass per area (LMA) were also assessed. We show in a conceptual model that the upper (adaxial) side of a hypostomatous leaf should be enriched in 13C compared to the lower (abaxial) side. CM, WX, and/or EWX isolated from 40 hypostomatous C3 species were 13C depleted relative to bulk leaf tissue by 2.01-2.85‰. The difference in δ13C between the abaxial and adaxial leaf sides (δ13CAB - 13CAD, Δb-d), ranged from - 2.22 to + 0.71‰ (- 0.09 ± 0.54‰, mean ± SD) in CM and from - 7.95 to 0.89‰ (- 1.17 ± 1.40‰) in WX. In contrast, two tested amphistomatous species showed no significant Δb-d difference in WX. Δb-d correlated negatively with LMA and leaf thickness of hypostomatous leaves, which indicates that the mesophyll air space imposes a non-negligible resistance to CO2 diffusion. δ13C of EWX and 30-C aldehyde in WX reveal a stronger CO2 drawdown than bulk WX or CM. Mean values of cd/cb and cc/cbd were 0.90 ± 0.12 and 0.66 ± 0.11, respectively, across 14 investigated species in which wax was isolated and analyzed. The diffusion resistance of IAS contributed 20 ± 14% to total mesophyll resistance and reflects species-specific and environmentally-induced differences in leaf functional anatomy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006564
003      
CZ-PrNML
005      
20200526093202.0
007      
ta
008      
200511s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11120-019-00628-7 $2 doi
035    __
$a (PubMed)30806882
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Šantrůček, J $u Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic. jsan@umbr.cas.cz.
245    10
$a Partitioning of mesophyll conductance for CO2 into intercellular and cellular components using carbon isotope composition of cuticles from opposite leaf sides / $c J. Šantrůček, L. Schreiber, J. Macková, M. Vráblová, J. Květoň, P. Macek, J. Neuwirthová,
520    9_
$a We suggest a new technique for estimating the relative drawdown of CO2 concentration (c) in the intercellular air space (IAS) across hypostomatous leaves (expressed as the ratio cd/cb, where the indexes d and b denote the adaxial and abaxial edges, respectively, of IAS), based on the carbon isotope composition (δ13C) of leaf cuticular membranes (CMs), cuticular waxes (WXs) or epicuticular waxes (EWXs) isolated from opposite leaf sides. The relative drawdown in the intracellular liquid phase (i.e., the ratio cc/cbd, where cc and cbd stand for mean CO2 concentrations in chloroplasts and in the IAS), the fraction of intercellular resistance in the total mesophyll resistance (rIAS/rm), leaf thickness, and leaf mass per area (LMA) were also assessed. We show in a conceptual model that the upper (adaxial) side of a hypostomatous leaf should be enriched in 13C compared to the lower (abaxial) side. CM, WX, and/or EWX isolated from 40 hypostomatous C3 species were 13C depleted relative to bulk leaf tissue by 2.01-2.85‰. The difference in δ13C between the abaxial and adaxial leaf sides (δ13CAB - 13CAD, Δb-d), ranged from - 2.22 to + 0.71‰ (- 0.09 ± 0.54‰, mean ± SD) in CM and from - 7.95 to 0.89‰ (- 1.17 ± 1.40‰) in WX. In contrast, two tested amphistomatous species showed no significant Δb-d difference in WX. Δb-d correlated negatively with LMA and leaf thickness of hypostomatous leaves, which indicates that the mesophyll air space imposes a non-negligible resistance to CO2 diffusion. δ13C of EWX and 30-C aldehyde in WX reveal a stronger CO2 drawdown than bulk WX or CM. Mean values of cd/cb and cc/cbd were 0.90 ± 0.12 and 0.66 ± 0.11, respectively, across 14 investigated species in which wax was isolated and analyzed. The diffusion resistance of IAS contributed 20 ± 14% to total mesophyll resistance and reflects species-specific and environmentally-induced differences in leaf functional anatomy.
650    _2
$a nadmořská výška $7 D000531
650    _2
$a oxid uhličitý $x metabolismus $7 D002245
650    _2
$a izotopy uhlíku $x metabolismus $7 D002247
650    _2
$a extracelulární prostor $x metabolismus $7 D005110
650    _2
$a mezofylové buňky $x metabolismus $7 D058503
650    _2
$a biologické modely $7 D008954
650    _2
$a listy rostlin $x anatomie a histologie $x růst a vývoj $x metabolismus $7 D018515
650    _2
$a vosky $x metabolismus $7 D014885
655    _2
$a časopisecké články $7 D016428
700    1_
$a Schreiber, L $u Institute for Cellular & Molecular Botany - IZMB, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
700    1_
$a Macková, J $u Biology Centre ASCR, Institute of Soil Biology, Na Sádkách 702/7, 37005, Ceske Budejovice, Czech Republic.
700    1_
$a Vráblová, M $u Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic. Institute of Environmental Technology, VSB - Technical University of Ostrava, 17. listopadu 15, 70833, Ostrava, Czech Republic.
700    1_
$a Květoň, J $u Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic. Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502, Prague, Czech Republic.
700    1_
$a Macek, P $u Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic. Biology Centre ASCR, Institute of Soil Biology, Na Sádkách 702/7, 37005, Ceske Budejovice, Czech Republic.
700    1_
$a Neuwirthová, J $u Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic.
773    0_
$w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 141, č. 1 (2019), s. 33-51
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30806882 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200526093158 $b ABA008
999    __
$a ok $b bmc $g 1525422 $s 1096620
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 141 $c 1 $d 33-51 $e 20190226 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...