Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Differentiation of genetic cardiac diseases on the basis of artificial intelligence

M Juhola, H Joutsijoki, K Penttinen, K Aalto-Setala

. 2019 ; 15 (3) : 43-52.

Jazyk angličtina Země Česko

Perzistentní odkaz   https://www.medvik.cz/link/bmc20009455

It has been previously shown that human cardiac disorders can be modeled with induced pluripotent stem cell differentiated cardiomyocytes (iPSC-CM), which enables to study disease characteristics and pathophysiology in more detail. We have shown that some genetic cardiac diseases can be separated from each other and from healthy controls by applying machine learning methods to calcium transient signals measured from these cells. In this study, separation of four genetic cardiac diseases and controls were studied by applying classification methods such as nearest neighbor searching algorithm, decision trees, least squares support vector machines and random forests to peak data computed from calcium transient signals measured from beating induced pluripotent stem cell-derived (iPSC) cardiomyocytes. The best classification accuracy obtained was 77.8% being very promising. The result strengthens our previous finding that the machine learning method can be exploited to identification of several genetic cardiac diseases, but also to separate mutations in different genes resulting in the same clinical phenotype.

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc20009455
003      
CZ-PrNML
005      
20220830140238.0
007      
cr|cn|
008      
200623s2019 xr ad fs 000 0|eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2019.15.3.2 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Juhola, M $u Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
245    10
$a Differentiation of genetic cardiac diseases on the basis of artificial intelligence / $c M Juhola, H Joutsijoki, K Penttinen, K Aalto-Setala
504    __
$a Literatura
520    9_
$a It has been previously shown that human cardiac disorders can be modeled with induced pluripotent stem cell differentiated cardiomyocytes (iPSC-CM), which enables to study disease characteristics and pathophysiology in more detail. We have shown that some genetic cardiac diseases can be separated from each other and from healthy controls by applying machine learning methods to calcium transient signals measured from these cells. In this study, separation of four genetic cardiac diseases and controls were studied by applying classification methods such as nearest neighbor searching algorithm, decision trees, least squares support vector machines and random forests to peak data computed from calcium transient signals measured from beating induced pluripotent stem cell-derived (iPSC) cardiomyocytes. The best classification accuracy obtained was 77.8% being very promising. The result strengthens our previous finding that the machine learning method can be exploited to identification of several genetic cardiac diseases, but also to separate mutations in different genes resulting in the same clinical phenotype.
650    _7
$a lidé $7 D006801 $2 czmesh
650    17
$a umělá inteligence $7 D001185 $2 czmesh
650    _7
$a strojové učení $7 D000069550 $2 czmesh
650    17
$a kardiomyocyty $x metabolismus $7 D032383 $2 czmesh
650    _7
$a kmenové buňky $7 D013234 $2 czmesh
650    _7
$a vrozené srdeční vady $x genetika $7 D006330 $2 czmesh
650    17
$a nemoci srdce $x genetika $7 D006331 $2 czmesh
650    _7
$a mutace $7 D009154 $2 czmesh
700    1_
$a Joutsijoki, H . $u Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
700    1_
$a Penttinen, K $u Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
700    1_
$a Aalto-Setala, K $u Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Heart Center, Tampere University Hospital, Tampere, Finland
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 15, č. 3 (2019), s. 43-52 $w MED00173462
856    41
$u http://www.ejbi.org/ $y domovská stránka časopisu - plný text volně přístupný
910    __
$a ABA008 $b online $y p $z 0
990    __
$a 20200623133828 $b ABA008
991    __
$a 20220830140234 $b ABA008
999    __
$a ok $b bmc $g 1537548 $s 1099539
BAS    __
$a 3 $a 4
BMC    __
$a 2019 $b 15 $c 3 $d 43-52 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK183 $d 20220830 $a NLK 2020-20/dk

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...