-
Je něco špatně v tomto záznamu ?
Use of energy deposition spectrometer Liulin for individual monitoring of aircrew
O. Ploc, K. Pachnerová Brabcová, F. Spurny, A. Malušek, T. Dachev,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21186209
DOI
10.1093/rpd/ncq505
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- částice - urychlovače MeSH
- dávka záření MeSH
- kalibrace MeSH
- kosmická loď MeSH
- kosmické záření MeSH
- křemík chemie MeSH
- letadla MeSH
- lidé MeSH
- monitorování radiace přístrojové vybavení metody MeSH
- neutrony MeSH
- oxid křemičitý chemie MeSH
- radiační ochrana přístrojové vybavení metody MeSH
- spektrální analýza přístrojové vybavení metody MeSH
- statistické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Silicon energy deposition spectrometer Liulin was primarily developed for cosmic radiation monitoring onboard spacecrafts. Nowadays, Liulin type detectors are also used to characterise radiation field on board aircraft, at alpine observatories and behind the shielding of heavy ion accelerators. In this work, experiments and calibrations performed in these radiation fields are presented and the method developed for calculation of ambient dose equivalent H*(10) on board aircraft is described. Since 2001, a simple method employing the energy deposition spectra had been used to determine H*(10) on board aircraft but, in 2004, it became clear that the resulting values were strongly biased at locations close to Earth's equator. An improved method for the determination of H*(10) on board aircraft using the Liulin detector was developed. It took into account the composition of the radiation field via the ratio of absorbed doses D(low) and D(neut) reflecting the contributions from low-LET particles and neutrons, respectively. It resulted in much better agreement with the EPCARD computer code for all aircraft locations; relative differences were within 11 % for low-LET and 20 % for neutron components of H*(10).
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20014277
- 003
- CZ-PrNML
- 005
- 20200922094927.0
- 007
- ta
- 008
- 200918s2011 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/rpd/ncq505 $2 doi
- 035 __
- $a (PubMed)21186209
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Ploc, O $u National Institute of Radiological Sciences, Fundamental Technology Center, RMR Section, Chiba, Japan.
- 245 10
- $a Use of energy deposition spectrometer Liulin for individual monitoring of aircrew / $c O. Ploc, K. Pachnerová Brabcová, F. Spurny, A. Malušek, T. Dachev,
- 520 9_
- $a Silicon energy deposition spectrometer Liulin was primarily developed for cosmic radiation monitoring onboard spacecrafts. Nowadays, Liulin type detectors are also used to characterise radiation field on board aircraft, at alpine observatories and behind the shielding of heavy ion accelerators. In this work, experiments and calibrations performed in these radiation fields are presented and the method developed for calculation of ambient dose equivalent H*(10) on board aircraft is described. Since 2001, a simple method employing the energy deposition spectra had been used to determine H*(10) on board aircraft but, in 2004, it became clear that the resulting values were strongly biased at locations close to Earth's equator. An improved method for the determination of H*(10) on board aircraft using the Liulin detector was developed. It took into account the composition of the radiation field via the ratio of absorbed doses D(low) and D(neut) reflecting the contributions from low-LET particles and neutrons, respectively. It resulted in much better agreement with the EPCARD computer code for all aircraft locations; relative differences were within 11 % for low-LET and 20 % for neutron components of H*(10).
- 650 _2
- $a letadla $7 D000401
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a kalibrace $7 D002138
- 650 _2
- $a kosmické záření $7 D003359
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a neutrony $7 D009502
- 650 _2
- $a částice - urychlovače $7 D010315
- 650 _2
- $a dávka záření $7 D011829
- 650 _2
- $a monitorování radiace $x přístrojové vybavení $x metody $7 D011834
- 650 _2
- $a radiační ochrana $x přístrojové vybavení $x metody $7 D011835
- 650 _2
- $a křemík $x chemie $7 D012825
- 650 _2
- $a oxid křemičitý $x chemie $7 D012822
- 650 _2
- $a kosmická loď $7 D018531
- 650 _2
- $a spektrální analýza $x přístrojové vybavení $x metody $7 D013057
- 651 _2
- $a Česká republika $7 D018153
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pachnerová Brabcová, K
- 700 1_
- $a Spurny, F
- 700 1_
- $a Malušek, A
- 700 1_
- $a Dachev, T
- 773 0_
- $w MED00004029 $t Radiation protection dosimetry $x 1742-3406 $g Roč. 144, č. 1-4 (2011), s. 611-614
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21186209 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200918 $b ABA008
- 991 __
- $a 20200922094923 $b ABA008
- 999 __
- $a ok $b bmc $g 1565605 $s 1104435
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 144 $c 1-4 $d 611-614 $e 20101224 $i 1742-3406 $m Radiation protection dosimetry $n Radiat Prot Dosimetry $x MED00004029
- LZP __
- $a Pubmed-20200918