• Je něco špatně v tomto záznamu ?

Pairwise network information and nonlinear correlations

Elliot A Martin, Jaroslav Hlinka, Jörn Davidsen

. 2016 ; (4-1) : 040301.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20017147

Grantová podpora
NV15-29835A MZ0 CEP - Centrální evidence projektů

Reconstructing the structural connectivity between interacting units from observed activity is a challenge across many different disciplines. The fundamental first step is to establish whether or to what extent the interactions between the units can be considered pairwise and, thus, can be modeled as an interaction network with simple links corresponding to pairwise interactions. In principle, this can be determined by comparing the maximum entropy given the bivariate probability distributions to the true joint entropy. In many practical cases, this is not an option since the bivariate distributions needed may not be reliably estimated or the optimization is too computationally expensive. Here we present an approach that allows one to use mutual informations as a proxy for the bivariate probability distributions. This has the advantage of being less computationally expensive and easier to estimate. We achieve this by introducing a novel entropy maximization scheme that is based on conditioning on entropies and mutual informations. This renders our approach typically superior to other methods based on linear approximations. The advantages of the proposed method are documented using oscillator networks and a resting-state human brain network as generic relevant examples.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20017147
003      
CZ-PrNML
005      
20240522140249.0
007      
ta
008      
201101s2016 xxu f 000 0|eng||
009      
AR
024    0_
$a 10.1103/PhysRevE.94.040301 $2 DOI
035    __
$a (Pubmed)27841521
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Martin, Elliot A . $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
245    10
$a Pairwise network information and nonlinear correlations / $c Elliot A Martin, Jaroslav Hlinka, Jörn Davidsen
520    9_
$a Reconstructing the structural connectivity between interacting units from observed activity is a challenge across many different disciplines. The fundamental first step is to establish whether or to what extent the interactions between the units can be considered pairwise and, thus, can be modeled as an interaction network with simple links corresponding to pairwise interactions. In principle, this can be determined by comparing the maximum entropy given the bivariate probability distributions to the true joint entropy. In many practical cases, this is not an option since the bivariate distributions needed may not be reliably estimated or the optimization is too computationally expensive. Here we present an approach that allows one to use mutual informations as a proxy for the bivariate probability distributions. This has the advantage of being less computationally expensive and easier to estimate. We achieve this by introducing a novel entropy maximization scheme that is based on conditioning on entropies and mutual informations. This renders our approach typically superior to other methods based on linear approximations. The advantages of the proposed method are documented using oscillator networks and a resting-state human brain network as generic relevant examples.
650    17
$a informační systémy $7 D007256 $2 czmesh
650    _7
$a teoretické modely $7 D008962 $2 czmesh
650    _7
$a entropie $7 D019277 $2 czmesh
650    _7
$a neuronové sítě $7 D016571 $2 czmesh
650    _7
$a korelace dat $7 D000078331 $2 czmesh
655    _7
$a práce podpořená grantem $7 D013485 $2 czmesh
700    1_
$a Hlinka, Jaroslav $7 xx0228167 $u Institute of Computer Science, The Czech Academy of Sciences, Pod vodarenskou vezi 2, 18207 Prague, Czech Republic ; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
700    1_
$a Davidsen, Jörn $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
773    0_
$t Physical review. E $x 2470-0045 $g č. 4-1 (2016), s. 040301 $w MED00195043
910    __
$a ABA008 $y 0 $z 0
990    __
$a 20201101101308 $b ABA008
991    __
$a 20240522140244 $b ABA008
999    __
$a kom $b bmc $g 1578141 $s 1107333
BAS    __
$a 3
BMC    __
$a 2016 $c 4-1 $d 040301 $x MED00195043 $i 2470-0045 $m Physical review. E
GRA    __
$a NV15-29835A $p MZ0
LZP    __
$c NLK120 $d 20240522 $a 2020-grant

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...