• Je něco špatně v tomto záznamu ?

Comparison of six methods for the detection of causality in a bivariate time series

Anna Krakovská, Jozef Jakubík, Martina Chvosteková, David Coufal, Nikola Jajcay, Milan Paluš

. 2018 ; 97 (4-1) : 042207.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu práce podpořená grantem, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc20018111

Grantová podpora
NV15-33250A MZ0 CEP - Centrální evidence projektů

In this comparative study, six causality detection methods were compared, namely, the Granger vector autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected two-species systems, a fishery model as an example of two correlated observables without a causal relationship, and an example of mediated causality. We tested not only 20000 points long clean time series but also noisy and short variants of the data. The standard and the extended Granger tests worked only for the autoregressive models. The remaining methods were more successful with the more complex test examples, although they differed considerably in their capability to reveal the presence and the direction of coupling and to distinguish causality from mere correlation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20018111
003      
CZ-PrNML
005      
20240617151656.0
007      
ta
008      
201112s2018 xxu f 000 0|eng||
009      
AR
024    0_
$a 10.1103/PhysRevE.97.042207 $2 DOI
035    __
$a (Pubmed)29758597
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Krakovská, Anna $u Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 842 19 Bratislava, Slovak Republic
245    10
$a Comparison of six methods for the detection of causality in a bivariate time series / $c Anna Krakovská, Jozef Jakubík, Martina Chvosteková, David Coufal, Nikola Jajcay, Milan Paluš
520    9_
$a In this comparative study, six causality detection methods were compared, namely, the Granger vector autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected two-species systems, a fishery model as an example of two correlated observables without a causal relationship, and an example of mediated causality. We tested not only 20000 points long clean time series but also noisy and short variants of the data. The standard and the extended Granger tests worked only for the autoregressive models. The remaining methods were more successful with the more complex test examples, although they differed considerably in their capability to reveal the presence and the direction of coupling and to distinguish causality from mere correlation.
650    17
$a teoretické modely $7 D008962 $2 czmesh
650    _7
$a systémová analýza $7 D013597 $2 czmesh
650    _7
$a kauzalita $7 D015984 $2 czmesh
650    _7
$a časové faktory $7 D013997 $2 czmesh
655    _7
$a práce podpořená grantem $7 D013485 $2 czmesh
655    _7
$a srovnávací studie $7 D003160 $2 czmesh
700    1_
$a Jakubík, Jozef $u Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 842 19 Bratislava, Slovak Republic
700    1_
$a Chvosteková, Martina $u Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 842 19 Bratislava, Slovak Republic
700    1_
$a Coufal, David $7 xx0110457 $u Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Praha 8, Czech Republic
700    1_
$a Jajcay, Nikola $u Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Praha 8, Czech Republic
700    1_
$a Paluš, Milan, $d 1963- $7 xx0089955 $u Institute of Computer Science, Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Praha 8, Czech Republic
773    0_
$t Physical review. E $x 2470-0045 $g Roč. 97, č. 4-1 (2018), s. 042207 $w MED00195043
910    __
$a ABA008 $y 0 $z 0
990    __
$a 20201112175308 $b ABA008
991    __
$a 20240617151657 $b ABA008
999    __
$a kom $b bmc $g 1582041 $s 1108308
BAS    __
$a 3
BMC    __
$a 2018 $b 97 $c 4-1 $d 042207 $x MED00195043 $i 2470-0045 $m Physical review. E
GRA    __
$a NV15-33250A $p MZ0
LZP    __
$c NLK120 $d 20240617 $a 2020-grant

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...