-
Je něco špatně v tomto záznamu ?
Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish
J. Trousil, Z. Syrová, NK. Dal, D. Rak, R. Konefał, E. Pavlova, J. Matějková, D. Cmarko, P. Kubíčková, O. Pavliš, T. Urbánek, M. Sedlák, F. Fenaroli, I. Raška, P. Štěpánek, M. Hrubý,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- dánio pruhované MeSH
- lidé MeSH
- makrofágy * metabolismus mikrobiologie MeSH
- modely nemocí na zvířatech MeSH
- Mycobacterium tuberculosis růst a vývoj MeSH
- myši MeSH
- nanočástice * chemie terapeutické užití MeSH
- nosiče léků * chemie farmakokinetika farmakologie MeSH
- RAW 264.7 buňky MeSH
- rifampin * chemie farmakokinetika farmakologie MeSH
- tuberkulóza farmakoterapie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is an intracellular pathogen of alveolar macrophages. These cells avidly take up nanoparticles, even without the use of specific targeting ligands, making the use of nanotherapeutics ideal for the treatment of such infections. Methoxy poly(ethylene oxide)- block-poly(ε-caprolactone) nanoparticles of several different polymer blocks' molecular weights and sizes (20-110 nm) were developed and critically compared as carriers for rifampicin, a cornerstone in tuberculosis therapy. The polymeric nanoparticles' uptake, consequent organelle targeting and intracellular degradation were shown to be highly dependent on the nanoparticles' physicochemical properties (the cell uptake half-lives 2.4-21 min, the degradation half-lives 51.6 min-ca. 20 h after the internalization). We show that the nanoparticles are efficiently taken up by macrophages and are able to effectively neutralize the persisting bacilli. Finally, we demonstrate, using a zebrafish model of tuberculosis, that the nanoparticles are well tolerated, have a curative effect, and are significantly more efficient compared to a free form of rifampicin. Hence, these findings demonstrate that this system shows great promise, both in vitro and in vivo, for the treatment of tuberculosis.
Department of Biosciences University of Oslo Blindernveien 31 0371 Oslo Norway
Institute of Experimental Physics Slovak Academy of Sciences Watsonova 47 040 01 Košice Slovakia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022782
- 003
- CZ-PrNML
- 005
- 20201214124810.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.biomac.9b00214 $2 doi
- 035 __
- $a (PubMed)30785284
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Trousil, Jiří $u Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského náměstí 2 , 162 00 Prague 6 , Czech Republic. Department of Analytical Chemistry, Faculty of Science , Charles University , Hlavova 8 , 128 43 Prague 2 , Czech Republic.
- 245 10
- $a Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish / $c J. Trousil, Z. Syrová, NK. Dal, D. Rak, R. Konefał, E. Pavlova, J. Matějková, D. Cmarko, P. Kubíčková, O. Pavliš, T. Urbánek, M. Sedlák, F. Fenaroli, I. Raška, P. Štěpánek, M. Hrubý,
- 520 9_
- $a Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is an intracellular pathogen of alveolar macrophages. These cells avidly take up nanoparticles, even without the use of specific targeting ligands, making the use of nanotherapeutics ideal for the treatment of such infections. Methoxy poly(ethylene oxide)- block-poly(ε-caprolactone) nanoparticles of several different polymer blocks' molecular weights and sizes (20-110 nm) were developed and critically compared as carriers for rifampicin, a cornerstone in tuberculosis therapy. The polymeric nanoparticles' uptake, consequent organelle targeting and intracellular degradation were shown to be highly dependent on the nanoparticles' physicochemical properties (the cell uptake half-lives 2.4-21 min, the degradation half-lives 51.6 min-ca. 20 h after the internalization). We show that the nanoparticles are efficiently taken up by macrophages and are able to effectively neutralize the persisting bacilli. Finally, we demonstrate, using a zebrafish model of tuberculosis, that the nanoparticles are well tolerated, have a curative effect, and are significantly more efficient compared to a free form of rifampicin. Hence, these findings demonstrate that this system shows great promise, both in vitro and in vivo, for the treatment of tuberculosis.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a modely nemocí na zvířatech $7 D004195
- 650 12
- $a nosiče léků $x chemie $x farmakokinetika $x farmakologie $7 D004337
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a makrofágy $x metabolismus $x mikrobiologie $7 D008264
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a Mycobacterium tuberculosis $x růst a vývoj $7 D009169
- 650 12
- $a nanočástice $x chemie $x terapeutické užití $7 D053758
- 650 _2
- $a RAW 264.7 buňky $7 D000067996
- 650 12
- $a rifampin $x chemie $x farmakokinetika $x farmakologie $7 D012293
- 650 _2
- $a tuberkulóza $x farmakoterapie $x metabolismus $x patologie $7 D014376
- 650 _2
- $a dánio pruhované $7 D015027
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Syrová, Zdeňka $u Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Albertov 4 , 128 00 Prague 2 , Czech Republic.
- 700 1_
- $a Dal, Nils-Jørgen K $u Department of Biosciences , University of Oslo , Blindernveien 31 , 0371 Oslo , Norway.
- 700 1_
- $a Rak, Dmytro $u Institute of Experimental Physics , Slovak Academy of Sciences , Watsonova 47 , 040 01 Košice , Slovakia.
- 700 1_
- $a Konefał, Rafał $u Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského náměstí 2 , 162 00 Prague 6 , Czech Republic.
- 700 1_
- $a Pavlova, Ewa $u Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského náměstí 2 , 162 00 Prague 6 , Czech Republic.
- 700 1_
- $a Matějková, Jana $u Department of Medical Microbiology, Second Faculty of Medicine , Charles University and Motol University Hospital , V Úvalu 84 , 150 06 Prague 5 , Czech Republic.
- 700 1_
- $a Cmarko, Dušan $u Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Albertov 4 , 128 00 Prague 2 , Czech Republic.
- 700 1_
- $a Kubíčková, Pavla $u Center of Biological Defense , Military Health Institute, Military Medical Agency , 561 66 Těchonín , Czech Republic.
- 700 1_
- $a Pavliš, Oto $u Center of Biological Defense , Military Health Institute, Military Medical Agency , 561 66 Těchonín , Czech Republic.
- 700 1_
- $a Urbánek, Tomáš $u Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského náměstí 2 , 162 00 Prague 6 , Czech Republic.
- 700 1_
- $a Sedlák, Marián $u Institute of Experimental Physics , Slovak Academy of Sciences , Watsonova 47 , 040 01 Košice , Slovakia.
- 700 1_
- $a Fenaroli, Federico $u Department of Biosciences , University of Oslo , Blindernveien 31 , 0371 Oslo , Norway.
- 700 1_
- $a Raška, Ivan $u Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Albertov 4 , 128 00 Prague 2 , Czech Republic.
- 700 1_
- $a Štěpánek, Petr $u Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského náměstí 2 , 162 00 Prague 6 , Czech Republic.
- 700 1_
- $a Hrubý, Martin $u Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského náměstí 2 , 162 00 Prague 6 , Czech Republic.
- 773 0_
- $w MED00006456 $t Biomacromolecules $x 1526-4602 $g Roč. 20, č. 4 (2019), s. 1798-1815
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30785284 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214124810 $b ABA008
- 999 __
- $a ok $b bmc $g 1595101 $s 1113458
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 20 $c 4 $d 1798-1815 $e 20190306 $i 1526-4602 $m Biomacromolecules $n Biomacromolecules $x MED00006456
- LZP __
- $a Pubmed-20201125