• Je něco špatně v tomto záznamu ?

Automated unsupervised behavioral state classification using intracranial electrophysiology

V. Kremen, BH. Brinkmann, JJ. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,

. 2019 ; 16 (2) : 026004. [pub] 20181002

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022812

Grantová podpora
R01 NS092882 NINDS NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States

OBJECTIVE: Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. APPROACH: Data from eight patients undergoing evaluation for epilepsy surgery (age [Formula: see text], three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. MAIN RESULTS: Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). SIGNIFICANCE: Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022812
003      
CZ-PrNML
005      
20201214124831.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/aae5ab $2 doi
035    __
$a (PubMed)30277223
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kremen, Vaclav $u Department of Neurology, Mayo Systems Electrophysiology Laboratory, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych Partyzanu 1580/3, 160 00 Prague 6, Czechia. Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.
245    10
$a Automated unsupervised behavioral state classification using intracranial electrophysiology / $c V. Kremen, BH. Brinkmann, JJ. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,
520    9_
$a OBJECTIVE: Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. APPROACH: Data from eight patients undergoing evaluation for epilepsy surgery (age [Formula: see text], three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. MAIN RESULTS: Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). SIGNIFICANCE: Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a chování $x fyziologie $7 D001519
650    _2
$a hluboká mozková stimulace $7 D046690
650    _2
$a elektrokortikografie $x metody $7 D000069280
650    _2
$a implantované elektrody $7 D004567
650    _2
$a epilepsie $x chirurgie $7 D004827
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a polysomnografie $7 D017286
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a stadia spánku $x fyziologie $7 D012894
650    _2
$a spánek pomalých vln $x fyziologie $7 D000077310
650    _2
$a bdění $x fyziologie $7 D014851
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Brinkmann, Benjamin H
700    1_
$a Van Gompel, Jamie J
700    1_
$a Stead, Matt
700    1_
$a St Louis, Erik K
700    1_
$a Worrell, Gregory A
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 16, č. 2 (2019), s. 026004
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30277223 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124831 $b ABA008
999    __
$a ok $b bmc $g 1595131 $s 1113488
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 16 $c 2 $d 026004 $e 20181002 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
GRA    __
$a R01 NS092882 $p NINDS NIH HHS $2 United States
GRA    __
$a UH2 NS095495 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...