-
Something wrong with this record ?
Automated unsupervised behavioral state classification using intracranial electrophysiology
V. Kremen, BH. Brinkmann, JJ. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,
Language English Country Great Britain
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 NS092882
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
- MeSH
- Algorithms MeSH
- Wakefulness physiology MeSH
- Behavior physiology MeSH
- Adult MeSH
- Electrocorticography methods MeSH
- Epilepsy surgery MeSH
- Deep Brain Stimulation MeSH
- Electrodes, Implanted MeSH
- Middle Aged MeSH
- Humans MeSH
- Polysomnography MeSH
- Reproducibility of Results MeSH
- Sleep, Slow-Wave physiology MeSH
- Sleep Stages physiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. APPROACH: Data from eight patients undergoing evaluation for epilepsy surgery (age [Formula: see text], three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. MAIN RESULTS: Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). SIGNIFICANCE: Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022812
- 003
- CZ-PrNML
- 005
- 20201214124831.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/aae5ab $2 doi
- 035 __
- $a (PubMed)30277223
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kremen, Vaclav $u Department of Neurology, Mayo Systems Electrophysiology Laboratory, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych Partyzanu 1580/3, 160 00 Prague 6, Czechia. Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.
- 245 10
- $a Automated unsupervised behavioral state classification using intracranial electrophysiology / $c V. Kremen, BH. Brinkmann, JJ. Van Gompel, M. Stead, EK. St Louis, GA. Worrell,
- 520 9_
- $a OBJECTIVE: Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. APPROACH: Data from eight patients undergoing evaluation for epilepsy surgery (age [Formula: see text], three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. MAIN RESULTS: Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). SIGNIFICANCE: Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a chování $x fyziologie $7 D001519
- 650 _2
- $a hluboká mozková stimulace $7 D046690
- 650 _2
- $a elektrokortikografie $x metody $7 D000069280
- 650 _2
- $a implantované elektrody $7 D004567
- 650 _2
- $a epilepsie $x chirurgie $7 D004827
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a polysomnografie $7 D017286
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a stadia spánku $x fyziologie $7 D012894
- 650 _2
- $a spánek pomalých vln $x fyziologie $7 D000077310
- 650 _2
- $a bdění $x fyziologie $7 D014851
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Brinkmann, Benjamin H
- 700 1_
- $a Van Gompel, Jamie J
- 700 1_
- $a Stead, Matt
- 700 1_
- $a St Louis, Erik K
- 700 1_
- $a Worrell, Gregory A
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 16, č. 2 (2019), s. 026004
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30277223 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214124831 $b ABA008
- 999 __
- $a ok $b bmc $g 1595131 $s 1113488
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 16 $c 2 $d 026004 $e 20181002 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- GRA __
- $a R01 NS092882 $p NINDS NIH HHS $2 United States
- GRA __
- $a UH2 NS095495 $p NINDS NIH HHS $2 United States
- LZP __
- $a Pubmed-20201125