-
Je něco špatně v tomto záznamu ?
Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation
M. Bartoň, R. Mareček, L. Krajčovičová, T. Slavíček, T. Kašpárek, P. Zemánková, P. Říha, M. Mikl,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
14-33143S
Grantová Agentura České Republiky - International
CZ.02.1.01/0.0/0.0/16_013/0001775
Ministerstvo Školství, Mládeže a Tělovýchovy and European Regional Development Fund - International
LM2015062
Ministerstvo Školství, Mládeže a Tělovýchovy - International
NLK
PubMed Central
od 1998
Medline Complete (EBSCOhost)
od 2012-07-01
ROAD: Directory of Open Access Scholarly Resources
od 1993
PubMed
30403309
DOI
10.1002/hbm.24433
Knihovny.cz E-zdroje
- MeSH
- artefakty * MeSH
- bílá hmota MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody MeSH
- mozek diagnostické zobrazování MeSH
- mozkomíšní mok MeSH
- počítačové zpracování obrazu metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022859
- 003
- CZ-PrNML
- 005
- 20220124111333.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/hbm.24433 $2 doi
- 035 __
- $a (PubMed)30403309
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bartoň, Marek $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic. First Department of Neurology, Faculty of Medicine of the Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
- 245 10
- $a Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation / $c M. Bartoň, R. Mareček, L. Krajčovičová, T. Slavíček, T. Kašpárek, P. Zemánková, P. Říha, M. Mikl,
- 520 9_
- $a This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.
- 650 12
- $a artefakty $7 D016477
- 650 _2
- $a mozek $x diagnostické zobrazování $7 D001921
- 650 _2
- $a mapování mozku $x metody $7 D001931
- 650 _2
- $a mozkomíšní mok $7 D002555
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a bílá hmota $7 D066127
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Mareček, Radek $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Krajčovičová, Lenka $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Slavíček, Tomáš $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Kašpárek, Tomáš $u Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Holštajn Zemánková, Petra $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic. First Department of Neurology, Faculty of Medicine of the Masaryk University and St. Anne's University Hospital, Brno, Czech Republic. Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic. $7 xx0268813
- 700 1_
- $a Říha, Pavel $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Mikl, Michal $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 773 0_
- $w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 40, č. 4 (2019), s. 1114-1138
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30403309 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20220124111334 $b ABA008
- 999 __
- $a ok $b bmc $g 1595178 $s 1113535
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 40 $c 4 $d 1114-1138 $e 20181107 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
- GRA __
- $a 14-33143S $p Grantová Agentura České Republiky $2 International
- GRA __
- $a CZ.02.1.01/0.0/0.0/16_013/0001775 $p Ministerstvo Školství, Mládeže a Tělovýchovy and European Regional Development Fund $2 International
- GRA __
- $a LM2015062 $p Ministerstvo Školství, Mládeže a Tělovýchovy $2 International
- LZP __
- $a Pubmed-20201125