• Something wrong with this record ?

Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation

M. Bartoň, R. Mareček, L. Krajčovičová, T. Slavíček, T. Kašpárek, P. Zemánková, P. Říha, M. Mikl,

. 2019 ; 40 (4) : 1114-1138. [pub] 20181107

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
14-33143S Grantová Agentura České Republiky - International
CZ.02.1.01/0.0/0.0/16_013/0001775 Ministerstvo Školství, Mládeže a Tělovýchovy and European Regional Development Fund - International
LM2015062 Ministerstvo Školství, Mládeže a Tělovýchovy - International

This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022859
003      
CZ-PrNML
005      
20220124111333.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/hbm.24433 $2 doi
035    __
$a (PubMed)30403309
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bartoň, Marek $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic. First Department of Neurology, Faculty of Medicine of the Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
245    10
$a Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation / $c M. Bartoň, R. Mareček, L. Krajčovičová, T. Slavíček, T. Kašpárek, P. Zemánková, P. Říha, M. Mikl,
520    9_
$a This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.
650    12
$a artefakty $7 D016477
650    _2
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a mapování mozku $x metody $7 D001931
650    _2
$a mozkomíšní mok $7 D002555
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a bílá hmota $7 D066127
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mareček, Radek $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Krajčovičová, Lenka $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Slavíček, Tomáš $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Kašpárek, Tomáš $u Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Holštajn Zemánková, Petra $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic. First Department of Neurology, Faculty of Medicine of the Masaryk University and St. Anne's University Hospital, Brno, Czech Republic. Department of Psychiatry, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic. $7 xx0268813
700    1_
$a Říha, Pavel $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Mikl, Michal $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
773    0_
$w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 40, č. 4 (2019), s. 1114-1138
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30403309 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20220124111334 $b ABA008
999    __
$a ok $b bmc $g 1595178 $s 1113535
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 40 $c 4 $d 1114-1138 $e 20181107 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
GRA    __
$a 14-33143S $p Grantová Agentura České Republiky $2 International
GRA    __
$a CZ.02.1.01/0.0/0.0/16_013/0001775 $p Ministerstvo Školství, Mládeže a Tělovýchovy and European Regional Development Fund $2 International
GRA    __
$a LM2015062 $p Ministerstvo Školství, Mládeže a Tělovýchovy $2 International
LZP    __
$a Pubmed-20201125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...