-
Je něco špatně v tomto záznamu ?
The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour
D. Dumuid, Ž. Pedišić, TE. Stanford, JA. Martín-Fernández, K. Hron, CA. Maher, LK. Lewis, T. Olds,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29157152
DOI
10.1177/0962280217737805
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- cvičení * MeSH
- lidé MeSH
- obezita dětí a dospívajících MeSH
- organizace času * MeSH
- sedavý životní styl * MeSH
- spánek * MeSH
- statistické modely * MeSH
- zdravotní stav MeSH
- životní styl MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
How people use their time has been linked with their health. For example, spending more time being physically active is known to be beneficial for health, whereas long durations of sitting have been associated with unfavourable health outcomes. Accordingly, public health messages have advocated swapping strategies to promote the reallocation of time between parts of the time-use composition, such as "Move More, Sit Less", with the aim of achieving optimal distribution of time for health. However, the majority of research underpinning these public health messages has not considered daily time use as a composition, and has ignored the relative nature of time-use data. We present a way of applying compositional data analysis to estimate change in a health outcome when fixed durations of time are reallocated from one part of a particular time-use composition to another, while the remaining parts are kept constant, based on a multiple linear regression model on isometric log ratio coordinates. In an example, we examine the expected differences in Body Mass Index z-scores for reallocations of time between sleep, physical activity and sedentary behaviour.
College of Nursing and Health Sciences Flinders University Adelaide Australia
Dept Informàtica Matemàtica Aplicada i Estadística Universitat de Girona Girona Spain
Institute of Sport Exercise and Active Living Victoria University Melbourne Australia
School of Health Sciences University of South Australia Adelaide Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20022882
- 003
- CZ-PrNML
- 005
- 20201214124928.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1177/0962280217737805 $2 doi
- 035 __
- $a (PubMed)29157152
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Dumuid, Dorothea $u 1 School of Health Sciences, University of South Australia, Adelaide, Australia.
- 245 14
- $a The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour / $c D. Dumuid, Ž. Pedišić, TE. Stanford, JA. Martín-Fernández, K. Hron, CA. Maher, LK. Lewis, T. Olds,
- 520 9_
- $a How people use their time has been linked with their health. For example, spending more time being physically active is known to be beneficial for health, whereas long durations of sitting have been associated with unfavourable health outcomes. Accordingly, public health messages have advocated swapping strategies to promote the reallocation of time between parts of the time-use composition, such as "Move More, Sit Less", with the aim of achieving optimal distribution of time for health. However, the majority of research underpinning these public health messages has not considered daily time use as a composition, and has ignored the relative nature of time-use data. We present a way of applying compositional data analysis to estimate change in a health outcome when fixed durations of time are reallocated from one part of a particular time-use composition to another, while the remaining parts are kept constant, based on a multiple linear regression model on isometric log ratio coordinates. In an example, we examine the expected differences in Body Mass Index z-scores for reallocations of time between sleep, physical activity and sedentary behaviour.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a cvičení $7 D015444
- 650 _2
- $a zdravotní stav $7 D006304
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a životní styl $7 D008019
- 650 12
- $a statistické modely $7 D015233
- 650 _2
- $a obezita dětí a dospívajících $7 D063766
- 650 12
- $a sedavý životní styl $7 D057185
- 650 12
- $a spánek $7 D012890
- 650 12
- $a organizace času $7 D017748
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pedišić, Željko $u 2 Institute of Sport, Exercise, and Active Living (ISEAL), Victoria University, Melbourne, Australia.
- 700 1_
- $a Stanford, Tyman Everleigh $u 3 LBT Innovations, Adelaide, Australia. 4 School of Mathematical Sciences, University of Adelaide, Adelaide, Australia.
- 700 1_
- $a Martín-Fernández, Josep-Antoni $u 5 Dept. Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, Girona, Spain.
- 700 1_
- $a Hron, Karel $u 6 Department of Mathematical Analysis and Applications of Mathematics, Palacký University, Olomouc, Czech Republic.
- 700 1_
- $a Maher, Carol A $u 1 School of Health Sciences, University of South Australia, Adelaide, Australia.
- 700 1_
- $a Lewis, Lucy K $u 7 College of Nursing and Health Sciences, Flinders University, Adelaide, Australia.
- 700 1_
- $a Olds, Timothy $u 1 School of Health Sciences, University of South Australia, Adelaide, Australia.
- 773 0_
- $w MED00006126 $t Statistical methods in medical research $x 1477-0334 $g Roč. 28, č. 3 (2019), s. 846-857
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29157152 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214124928 $b ABA008
- 999 __
- $a ok $b bmc $g 1595201 $s 1113558
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 28 $c 3 $d 846-857 $e 20171120 $i 1477-0334 $m Statistical methods in medical research $n Stat Methods Med Res $x MED00006126
- LZP __
- $a Pubmed-20201125