• Je něco špatně v tomto záznamu ?

ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery

RA. Corey, Z. Ahdash, A. Shah, E. Pyle, WJ. Allen, T. Fessl, JE. Lovett, A. Politis, I. Collinson,

. 2019 ; 8 (-) : . [pub] 20190102

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022918

Grantová podpora
BB/I008675/1 Biotechnology and Biological Sciences Research Council - United Kingdom
099149/Z/12/Z Wellcome - International
CZ.02.1.01/0.0/0.0/15_003/0000441 European Regional Development Fund - International
109854/Z/15/Z Wellcome - International
BB/N015126/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
104632 Wellcome - International
BB/M003604/1 Biotechnology and Biological Sciences Research Council - United Kingdom
ep/m508214/1 Engineering and Physical Sciences Research Council - International
University Research Fellowship Royal Society - International

Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022918
003      
CZ-PrNML
005      
20201214124955.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.7554/eLife.41803 $2 doi
035    __
$a (PubMed)30601115
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Corey, Robin A $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
245    10
$a ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery / $c RA. Corey, Z. Ahdash, A. Shah, E. Pyle, WJ. Allen, T. Fessl, JE. Lovett, A. Politis, I. Collinson,
520    9_
$a Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.
650    _2
$a adenosintrifosfatasy $x chemie $x metabolismus $7 D000251
650    _2
$a adenosintrifosfát $x chemie $x metabolismus $7 D000255
650    _2
$a Escherichia coli $x metabolismus $7 D004926
650    _2
$a proteiny z Escherichia coli $x chemie $x metabolismus $7 D029968
650    _2
$a membránové transportní proteiny $x chemie $x metabolismus $7 D026901
650    _2
$a molekulární modely $7 D008958
650    12
$a sbalování proteinů $7 D017510
650    _2
$a proteinové prekurzory $x metabolismus $7 D011498
650    _2
$a transport proteinů $7 D021381
650    _2
$a translokační kanály SEC $x chemie $x metabolismus $7 D000069816
650    _2
$a proteiny SecA $x chemie $x metabolismus $7 D000081416
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ahdash, Zainab $u Department of Chemistry, King's College London, London, United Kingdom.
700    1_
$a Shah, Anokhi $u SUPA School of Physics and Astronomy and BSRC, University of St Andrews, Scotland, United Kingdom.
700    1_
$a Pyle, Euan $u Department of Chemistry, King's College London, London, United Kingdom. Department of Chemistry, Imperial College London, London, United Kingdom.
700    1_
$a Allen, William J $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
700    1_
$a Fessl, Tomas $u University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic.
700    1_
$a Lovett, Janet E $u SUPA School of Physics and Astronomy and BSRC, University of St Andrews, Scotland, United Kingdom.
700    1_
$a Politis, Argyris $u Department of Chemistry, King's College London, London, United Kingdom.
700    1_
$a Collinson, Ian $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
773    0_
$w MED00188753 $t eLife $x 2050-084X $g Roč. 8, č. - (2019)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30601115 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124955 $b ABA008
999    __
$a ok $b bmc $g 1595237 $s 1113594
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 8 $c - $e 20190102 $i 2050-084X $m eLife $n eLife $x MED00188753
GRA    __
$a BB/I008675/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a 099149/Z/12/Z $p Wellcome $2 International
GRA    __
$a CZ.02.1.01/0.0/0.0/15_003/0000441 $p European Regional Development Fund $2 International
GRA    __
$a 109854/Z/15/Z $p Wellcome $2 International
GRA    __
$a BB/N015126/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a 104632 $p Wellcome $2 International
GRA    __
$a BB/M003604/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a ep/m508214/1 $p Engineering and Physical Sciences Research Council $2 International
GRA    __
$a University Research Fellowship $p Royal Society $2 International
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace