Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery

RA. Corey, Z. Ahdash, A. Shah, E. Pyle, WJ. Allen, T. Fessl, JE. Lovett, A. Politis, I. Collinson,

. 2019 ; 8 (-) : . [pub] 20190102

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
BB/I008675/1 Biotechnology and Biological Sciences Research Council - United Kingdom
099149/Z/12/Z Wellcome - International
CZ.02.1.01/0.0/0.0/15_003/0000441 European Regional Development Fund - International
109854/Z/15/Z Wellcome - International
BB/N015126/1 Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
104632 Wellcome - International
BB/M003604/1 Biotechnology and Biological Sciences Research Council - United Kingdom
ep/m508214/1 Engineering and Physical Sciences Research Council - International
University Research Fellowship Royal Society - International

Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20022918
003      
CZ-PrNML
005      
20201214124955.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.7554/eLife.41803 $2 doi
035    __
$a (PubMed)30601115
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Corey, Robin A $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
245    10
$a ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery / $c RA. Corey, Z. Ahdash, A. Shah, E. Pyle, WJ. Allen, T. Fessl, JE. Lovett, A. Politis, I. Collinson,
520    9_
$a Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide (Allen et al., 2016). Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogendeuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP-induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.
650    _2
$a adenosintrifosfatasy $x chemie $x metabolismus $7 D000251
650    _2
$a adenosintrifosfát $x chemie $x metabolismus $7 D000255
650    _2
$a Escherichia coli $x metabolismus $7 D004926
650    _2
$a proteiny z Escherichia coli $x chemie $x metabolismus $7 D029968
650    _2
$a membránové transportní proteiny $x chemie $x metabolismus $7 D026901
650    _2
$a molekulární modely $7 D008958
650    12
$a sbalování proteinů $7 D017510
650    _2
$a proteinové prekurzory $x metabolismus $7 D011498
650    _2
$a transport proteinů $7 D021381
650    _2
$a translokační kanály SEC $x chemie $x metabolismus $7 D000069816
650    _2
$a proteiny SecA $x chemie $x metabolismus $7 D000081416
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ahdash, Zainab $u Department of Chemistry, King's College London, London, United Kingdom.
700    1_
$a Shah, Anokhi $u SUPA School of Physics and Astronomy and BSRC, University of St Andrews, Scotland, United Kingdom.
700    1_
$a Pyle, Euan $u Department of Chemistry, King's College London, London, United Kingdom. Department of Chemistry, Imperial College London, London, United Kingdom.
700    1_
$a Allen, William J $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
700    1_
$a Fessl, Tomas $u University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic.
700    1_
$a Lovett, Janet E $u SUPA School of Physics and Astronomy and BSRC, University of St Andrews, Scotland, United Kingdom.
700    1_
$a Politis, Argyris $u Department of Chemistry, King's College London, London, United Kingdom.
700    1_
$a Collinson, Ian $u School of Biochemistry, University of Bristol, Bristol, United Kingdom.
773    0_
$w MED00188753 $t eLife $x 2050-084X $g Roč. 8, č. - (2019)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30601115 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124955 $b ABA008
999    __
$a ok $b bmc $g 1595237 $s 1113594
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 8 $c - $e 20190102 $i 2050-084X $m eLife $n eLife $x MED00188753
GRA    __
$a BB/I008675/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a 099149/Z/12/Z $p Wellcome $2 International
GRA    __
$a CZ.02.1.01/0.0/0.0/15_003/0000441 $p European Regional Development Fund $2 International
GRA    __
$a 109854/Z/15/Z $p Wellcome $2 International
GRA    __
$a BB/N015126/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a 104632 $p Wellcome $2 International
GRA    __
$a BB/M003604/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
GRA    __
$a ep/m508214/1 $p Engineering and Physical Sciences Research Council $2 International
GRA    __
$a University Research Fellowship $p Royal Society $2 International
LZP    __
$a Pubmed-20201125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...