Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies

I. Klawonn, MJ. Eichner, ST. Wilson, N. Moradi, B. Thamdrup, S. Kümmel, M. Gehre, A. Khalili, HP. Grossart, DM. Karl, H. Ploug,

. 2020 ; 14 (2) : 399-412. [pub] 20191021

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023202

E-zdroje NLK Online Plný text

PubMed Central od 2011 do Před 1 rokem
Europe PubMed Central od 2011 do Před 1 rokem
ProQuest Central od 2007-05-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2007-05-01 do Před 1 rokem

Trichodesmium is an important dinitrogen (N2)-fixing cyanobacterium in marine ecosystems. Recent nucleic acid analyses indicate that Trichodesmium colonies with their diverse epibionts support various nitrogen (N) transformations beyond N2 fixation. However, rates of these transformations and concentration gradients of N compounds in Trichodesmium colonies remain largely unresolved. We combined isotope-tracer incubations, micro-profiling and numeric modelling to explore carbon fixation, N cycling processes as well as oxygen, ammonium and nitrate concentration gradients in individual field-sampled Trichodesmium colonies. Colonies were net-autotrophic, with carbon and N2 fixation occurring mostly during the day. Ten percent of the fixed N was released as ammonium after 12-h incubations. Nitrification was not detectable but nitrate consumption was high when nitrate was added. The consumed nitrate was partly reduced to ammonium, while denitrification was insignificant. Thus, the potential N transformation network was characterised by fixed N gain and recycling processes rather than denitrification. Oxygen concentrations within colonies were ~60-200% air-saturation. Moreover, our modelling predicted steep concentration gradients, with up to 6-fold higher ammonium concentrations, and nitrate depletion in the colony centre compared to the ambient seawater. These gradients created a chemically heterogeneous microenvironment, presumably facilitating diverse microbial metabolisms in millimetre-sized Trichodesmium colonies.

000      
00000naa a2200000 a 4500
001      
bmc20023202
003      
CZ-PrNML
005      
20201214125456.0
007      
ta
008      
201125s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41396-019-0514-9 $2 doi
035    __
$a (PubMed)31636364
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Klawonn, Isabell $u Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden. klawonn@stanford.edu. Department of Experimental Limnology, IGB-Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany. klawonn@stanford.edu. Department of Earth System Science, Stanford University, Stanford, CA, USA. klawonn@stanford.edu.
245    10
$a Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies / $c I. Klawonn, MJ. Eichner, ST. Wilson, N. Moradi, B. Thamdrup, S. Kümmel, M. Gehre, A. Khalili, HP. Grossart, DM. Karl, H. Ploug,
520    9_
$a Trichodesmium is an important dinitrogen (N2)-fixing cyanobacterium in marine ecosystems. Recent nucleic acid analyses indicate that Trichodesmium colonies with their diverse epibionts support various nitrogen (N) transformations beyond N2 fixation. However, rates of these transformations and concentration gradients of N compounds in Trichodesmium colonies remain largely unresolved. We combined isotope-tracer incubations, micro-profiling and numeric modelling to explore carbon fixation, N cycling processes as well as oxygen, ammonium and nitrate concentration gradients in individual field-sampled Trichodesmium colonies. Colonies were net-autotrophic, with carbon and N2 fixation occurring mostly during the day. Ten percent of the fixed N was released as ammonium after 12-h incubations. Nitrification was not detectable but nitrate consumption was high when nitrate was added. The consumed nitrate was partly reduced to ammonium, while denitrification was insignificant. Thus, the potential N transformation network was characterised by fixed N gain and recycling processes rather than denitrification. Oxygen concentrations within colonies were ~60-200% air-saturation. Moreover, our modelling predicted steep concentration gradients, with up to 6-fold higher ammonium concentrations, and nitrate depletion in the colony centre compared to the ambient seawater. These gradients created a chemically heterogeneous microenvironment, presumably facilitating diverse microbial metabolisms in millimetre-sized Trichodesmium colonies.
650    _2
$a amoniové sloučeniny $x metabolismus $7 D064751
650    _2
$a autotrofní procesy $7 D052818
650    _2
$a uhlík $x metabolismus $7 D002244
650    _2
$a koloběh uhlíku $7 D057486
650    _2
$a oxid uhličitý $x metabolismus $7 D002245
650    _2
$a denitrifikace $7 D058440
650    _2
$a dusičnany $x metabolismus $7 D009566
650    _2
$a nitrifikace $7 D058465
650    _2
$a dusík $x metabolismus $7 D009584
650    _2
$a koloběh dusíku $7 D058458
650    _2
$a fixace dusíku $7 D009586
650    _2
$a kyslík $x metabolismus $7 D010100
650    _2
$a mořská voda $x mikrobiologie $7 D012623
650    _2
$a Trichodesmium $x metabolismus $7 D000072359
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Eichner, Meri J $u Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden. Centre A lgatech, Institute of Microbiology, The Czech Academy of Sciences, Trebon, Czech Republic.
700    1_
$a Wilson, Samuel T $u Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i at Manoa, Honolulu, HI, USA.
700    1_
$a Moradi, Nasrollah $u Department of Physics & Earth Sciences, Jacobs University Bremen, Bremen, Germany. Max Planck Institute for Marine Microbiology, Bremen, Germany.
700    1_
$a Thamdrup, Bo $u Department of Biology and Nordic Center for Earth Evolution, University of Southern Denmark, Odense M, Denmark.
700    1_
$a Kümmel, Steffen $u Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
700    1_
$a Gehre, Matthias $u Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
700    1_
$a Khalili, Arzhang $u Department of Physics & Earth Sciences, Jacobs University Bremen, Bremen, Germany. Max Planck Institute for Marine Microbiology, Bremen, Germany.
700    1_
$a Grossart, Hans-Peter $u Department of Experimental Limnology, IGB-Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
700    1_
$a Karl, David M $u Daniel K. Inouye Center for Microbial Oceanography, Research and Education, University of Hawai'i at Manoa, Honolulu, HI, USA.
700    1_
$a Ploug, Helle $u Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
773    0_
$w MED00181091 $t The ISME journal $x 1751-7370 $g Roč. 14, č. 2 (2020), s. 399-412
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31636364 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125456 $b ABA008
999    __
$a ok $b bmc $g 1595521 $s 1113878
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 14 $c 2 $d 399-412 $e 20191021 $i 1751-7370 $m The ISME journal $n ISME J $x MED00181091
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...