-
Je něco špatně v tomto záznamu ?
Tissue clearing and its applications in neuroscience
HR. Ueda, A. Ertürk, K. Chung, V. Gradinaru, A. Chédotal, P. Tomancak, PJ. Keller,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
DP2 ES027992
NIEHS NIH HHS - United States
NLK
ProQuest Central
od 2000-10-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 2000-10-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2000-10-01 do Před 1 rokem
Psychology Database (ProQuest)
od 2000-10-01 do Před 1 rokem
- MeSH
- histologické techniky přístrojové vybavení metody MeSH
- lidé MeSH
- mikroskopie přístrojové vybavení metody MeSH
- nervový systém cytologie MeSH
- neurovědy MeSH
- savci MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
State-of-the-art tissue-clearing methods provide subcellular-level optical access to intact tissues from individual organs and even to some entire mammals. When combined with light-sheet microscopy and automated approaches to image analysis, existing tissue-clearing methods can speed up and may reduce the cost of conventional histology by several orders of magnitude. In addition, tissue-clearing chemistry allows whole-organ antibody labelling, which can be applied even to thick human tissues. By combining the most powerful labelling, clearing, imaging and data-analysis tools, scientists are extracting structural and functional cellular and subcellular information on complex mammalian bodies and large human specimens at an accelerated pace. The rapid generation of terabyte-scale imaging data furthermore creates a high demand for efficient computational approaches that tackle challenges in large-scale data analysis and management. In this Review, we discuss how tissue-clearing methods could provide an unbiased, system-level view of mammalian bodies and human specimens and discuss future opportunities for the use of these methods in human neuroscience.
Division of Biology and Biological Engineering California Institute of Technology Pasadena CA USA
Institut de la Vision Sorbonne Université INSERM CNRS Paris France
Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023206
- 003
- CZ-PrNML
- 005
- 20201214125500.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41583-019-0250-1 $2 doi
- 035 __
- $a (PubMed)31896771
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Ueda, Hiroki R $u Department of Systems Pharmacology, University of Tokyo, Tokyo, Japan. uedah-tky@umin.ac.jp. Laboratory for Synthetic Biology, RIKEN BDR, Suita, Japan. uedah-tky@umin.ac.jp.
- 245 10
- $a Tissue clearing and its applications in neuroscience / $c HR. Ueda, A. Ertürk, K. Chung, V. Gradinaru, A. Chédotal, P. Tomancak, PJ. Keller,
- 520 9_
- $a State-of-the-art tissue-clearing methods provide subcellular-level optical access to intact tissues from individual organs and even to some entire mammals. When combined with light-sheet microscopy and automated approaches to image analysis, existing tissue-clearing methods can speed up and may reduce the cost of conventional histology by several orders of magnitude. In addition, tissue-clearing chemistry allows whole-organ antibody labelling, which can be applied even to thick human tissues. By combining the most powerful labelling, clearing, imaging and data-analysis tools, scientists are extracting structural and functional cellular and subcellular information on complex mammalian bodies and large human specimens at an accelerated pace. The rapid generation of terabyte-scale imaging data furthermore creates a high demand for efficient computational approaches that tackle challenges in large-scale data analysis and management. In this Review, we discuss how tissue-clearing methods could provide an unbiased, system-level view of mammalian bodies and human specimens and discuss future opportunities for the use of these methods in human neuroscience.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a histologické techniky $x přístrojové vybavení $x metody $7 D006652
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a savci $7 D008322
- 650 _2
- $a mikroskopie $x přístrojové vybavení $x metody $7 D008853
- 650 _2
- $a nervový systém $x cytologie $7 D009420
- 650 _2
- $a neurovědy $7 D009488
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Ertürk, Ali $u Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian University of Munich, Munich, Germany. Institute of Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany. Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- 700 1_
- $a Chung, Kwanghun $u Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Eli & Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA. Center for NanoMedicine, Institute for Basic Science, Seoul, Republic of Korea. Graduate Program of Nano Biomedical Engineering, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea.
- 700 1_
- $a Gradinaru, Viviana $u Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- 700 1_
- $a Chédotal, Alain $u Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
- 700 1_
- $a Tomancak, Pavel $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic.
- 700 1_
- $a Keller, Philipp J $u Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- 773 0_
- $w MED00006486 $t Nature reviews. Neuroscience $x 1471-0048 $g Roč. 21, č. 2 (2020), s. 61-79
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31896771 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125500 $b ABA008
- 999 __
- $a ok $b bmc $g 1595525 $s 1113882
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 21 $c 2 $d 61-79 $e - $i 1471-0048 $m Nature reviews. Neuroscience $n Nat Rev Neurosci $x MED00006486
- GRA __
- $a DP2 ES027992 $p NIEHS NIH HHS $2 United States
- LZP __
- $a Pubmed-20201125