-
Something wrong with this record ?
HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion
LC. van der Woude, G. Perrella, BL. Snoek, M. van Hoogdalem, O. Novák, MC. van Verk, HN. van Kooten, LE. Zorn, R. Tonckens, JA. Dongus, M. Praat, EA. Stouten, MCG. Proveniers, E. Vellutini, E. Patitaki, U. Shapulatov, W. Kohlen, S....
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/M023079/1
Biotechnology and Biological Sciences Research Council - United Kingdom
NLK
Free Medical Journals
from 1915 to 6 months ago
Freely Accessible Science Journals
from 1915 to 6 months ago
PubMed Central
from 1915 to 6 months ago
Europe PubMed Central
from 1915 to 6 months ago
Open Access Digital Library
from 1915-01-15
Open Access Digital Library
from 1915-01-01
- MeSH
- Arabidopsis enzymology genetics physiology MeSH
- Histone Deacetylases genetics metabolism MeSH
- Histones genetics metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Mixed Function Oxygenases genetics metabolism MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Basic Helix-Loop-Helix Transcription Factors genetics metabolism MeSH
- Protein Binding MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.
Laboratory of Molecular Biology Wageningen University 6708 PB Wageningen The Netherlands
Laboratory of Plant Physiology Wageningen University 6708 PB Wageningen The Netherlands
School of Biological Sciences Monash University VIC 3800 Melbourne Australia
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023344
- 003
- CZ-PrNML
- 005
- 20201214125814.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1911694116 $2 doi
- 035 __
- $a (PubMed)31767749
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a van der Woude, Lennard C $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 245 10
- $a HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion / $c LC. van der Woude, G. Perrella, BL. Snoek, M. van Hoogdalem, O. Novák, MC. van Verk, HN. van Kooten, LE. Zorn, R. Tonckens, JA. Dongus, M. Praat, EA. Stouten, MCG. Proveniers, E. Vellutini, E. Patitaki, U. Shapulatov, W. Kohlen, S. Balasubramanian, K. Ljung, AR. van der Krol, S. Smeekens, E. Kaiserli, M. van Zanten,
- 520 9_
- $a Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.
- 650 _2
- $a Arabidopsis $x enzymologie $x genetika $x fyziologie $7 D017360
- 650 _2
- $a proteiny huseníčku $x genetika $x metabolismus $7 D029681
- 650 _2
- $a transkripční faktory bHLH $x genetika $x metabolismus $7 D051792
- 650 _2
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a histondeacetylasy $x genetika $x metabolismus $7 D006655
- 650 _2
- $a histony $x genetika $x metabolismus $7 D006657
- 650 _2
- $a vysoká teplota $7 D006358
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a oxygenasy se smíšenou funkcí $x genetika $x metabolismus $7 D006899
- 650 _2
- $a vazba proteinů $7 D011485
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Perrella, Giorgio $u Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom. Trisaia Research Centre, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 75026 Rotondella (Matera), Italy.
- 700 1_
- $a Snoek, Basten L $u Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a van Hoogdalem, Mark $u Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Novák, Ondřej $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden. Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, 78371 Olomouc, Czech Republic.
- 700 1_
- $a van Verk, Marcel C $u Theoretical Biology and Bioinformatics, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584 CH Utrecht, The Netherlands. Plant Microbe Interactions, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a van Kooten, Heleen N $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Zorn, Lennert E $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Tonckens, Rolf $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Dongus, Joram A $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Praat, Myrthe $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Stouten, Evelien A $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Proveniers, Marcel C G $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Vellutini, Elisa $u Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom.
- 700 1_
- $a Patitaki, Eirini $u Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom.
- 700 1_
- $a Shapulatov, Umidjon $u Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Kohlen, Wouter $u Laboratory of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Balasubramanian, Sureshkumar $u School of Biological Sciences, Monash University, VIC 3800, Melbourne, Australia.
- 700 1_
- $a Ljung, Karin $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
- 700 1_
- $a van der Krol, Alexander R $u Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands.
- 700 1_
- $a Smeekens, Sjef $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
- 700 1_
- $a Kaiserli, Eirini $u Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom.
- 700 1_
- $a van Zanten, Martijn $u Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands; m.vanzanten@uu.nl.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 116, č. 50 (2019), s. 25343-25354
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31767749 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125813 $b ABA008
- 999 __
- $a ok $b bmc $g 1595663 $s 1114020
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 116 $c 50 $d 25343-25354 $e 20191125 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- GRA __
- $a BB/M023079/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20201125