-
Je něco špatně v tomto záznamu ?
uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3
K. Poncová, S. Wagner, ME. Jansen, P. Beznosková, S. Gunišová, A. Herrmannová, J. Zeman, J. Dong, LS. Valášek,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
31642471
DOI
10.1093/nar/gkz929
Knihovny.cz E-zdroje
- MeSH
- eukaryotický iniciační faktor 3 genetika metabolismus MeSH
- geneticky modifikované organismy MeSH
- proteosyntéza genetika MeSH
- ribozomální proteiny genetika fyziologie MeSH
- ribozomy metabolismus MeSH
- RNA transferová metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika fyziologie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- terminace translace peptidového řetězce * genetika MeSH
- terminační kodon metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023365
- 003
- CZ-PrNML
- 005
- 20201214125845.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkz929 $2 doi
- 035 __
- $a (PubMed)31642471
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Poncová, Kristýna $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic. Charles University, Faculty of Science, Prague, the Czech Republic.
- 245 10
- $a uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3 / $c K. Poncová, S. Wagner, ME. Jansen, P. Beznosková, S. Gunišová, A. Herrmannová, J. Zeman, J. Dong, LS. Valášek,
- 520 9_
- $a Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.
- 650 _2
- $a vazebná místa $x genetika $7 D001665
- 650 _2
- $a terminační kodon $x metabolismus $7 D018388
- 650 _2
- $a eukaryotický iniciační faktor 3 $x genetika $x metabolismus $7 D039621
- 650 _2
- $a geneticky modifikované organismy $7 D030781
- 650 12
- $a terminace translace peptidového řetězce $x genetika $7 D010443
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a proteosyntéza $x genetika $7 D014176
- 650 _2
- $a RNA transferová $x metabolismus $7 D012343
- 650 _2
- $a ribozomální proteiny $x genetika $x fyziologie $7 D012269
- 650 _2
- $a ribozomy $x metabolismus $7 D012270
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $x fyziologie $7 D029701
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Wagner, Susan $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.
- 700 1_
- $a Jansen, Myrte Esmeralda $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.
- 700 1_
- $a Beznosková, Petra $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.
- 700 1_
- $a Gunišová, Stanislava $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.
- 700 1_
- $a Herrmannová, Anna $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.
- 700 1_
- $a Zeman, Jakub $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.
- 700 1_
- $a Dong, Jinsheng $u Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
- 700 1_
- $a Valášek, Leoš Shivaya $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, the Czech Republic.
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 47, č. 21 (2019), s. 11326-11343
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31642471 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125844 $b ABA008
- 999 __
- $a ok $b bmc $g 1595684 $s 1114041
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 47 $c 21 $d 11326-11343 $e 20191202 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20201125