-
Something wrong with this record ?
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure
V. Brázda, M. Fojta,
Language English Country Switzerland
Document type Journal Article, Review
Grant support
18-15548S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15 003/0000477
European Regional Development Fund
NLK
Free Medical Journals
from 2000
Freely Accessible Science Journals
from 2000
PubMed Central
from 2007
Europe PubMed Central
from 2007
ProQuest Central
from 2000-03-01
Open Access Digital Library
from 2000-01-01
Open Access Digital Library
from 2007-01-01
Health & Medicine (ProQuest)
from 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
from 2000
PubMed
31717504
DOI
10.3390/ijms20225605
Knihovny.cz E-resources
- MeSH
- DNA chemistry metabolism MeSH
- Nucleic Acid Conformation MeSH
- Protein Conformation MeSH
- Consensus Sequence MeSH
- Humans MeSH
- Models, Molecular MeSH
- Tumor Suppressor Protein p53 chemistry metabolism MeSH
- Amino Acid Sequence MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5'RRRCWWGYYY3' sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023495
- 003
- CZ-PrNML
- 005
- 20201214130205.0
- 007
- ta
- 008
- 201125s2019 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms20225605 $2 doi
- 035 __
- $a (PubMed)31717504
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Brázda, Václav $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- 245 14
- $a The Rich World of p53 DNA Binding Targets: The Role of DNA Structure / $c V. Brázda, M. Fojta,
- 520 9_
- $a The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5'RRRCWWGYYY3' sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a konsenzuální sekvence $7 D016384
- 650 _2
- $a DNA $x chemie $x metabolismus $7 D004247
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a nádorový supresorový protein p53 $x chemie $x metabolismus $7 D016159
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Fojta, Miroslav $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 20, č. 22 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31717504 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214130205 $b ABA008
- 999 __
- $a ok $b bmc $g 1595814 $s 1114171
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 20 $c 22 $e 20191109 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a 18-15548S $p Grantová Agentura České Republiky
- GRA __
- $a CZ.02.1.01/0.0/0.0/15 003/0000477 $p European Regional Development Fund
- LZP __
- $a Pubmed-20201125