• Je něco špatně v tomto záznamu ?

Multicenter Evaluation of Circulating Plasma MicroRNA Extraction Technologies for the Development of Clinically Feasible Reverse Transcription Quantitative PCR and Next-Generation Sequencing Analytical Work Flows

V. Kloten, MHD. Neumann, F. Di Pasquale, M. Sprenger-Haussels, JM. Shaffer, M. Schlumpberger, A. Herdean, F. Betsou, W. Ammerlaan, T. Af Hällström, E. Serkkola, T. Forsman, E. Lianidou, R. Sjöback, M. Kubista, S. Bender, R. Lampignano, T. Krahn,...

. 2019 ; 65 (9) : 1132-1140. [pub] 20190624

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023686

BACKGROUND: In human body fluids, microRNA (miRNA) can be found as circulating cell-free miRNA (cfmiRNA), as well as secreted into extracellular vesicles (EVmiRNA). miRNAs are being intensively evaluated as minimally invasive liquid biopsy biomarkers in patients with cancer. The growing interest in developing clinical assays for circulating miRNA necessitates careful consideration of confounding effects of preanalytical and analytical parameters. METHODS: By using reverse transcription quantitative real-time PCR and next-generation sequencing (NGS), we compared extraction efficiencies of 5 different protocols for cfmiRNA and 2 protocols for EVmiRNA isolation in a multicentric manner. The efficiency of the different extraction methods was evaluated by measuring exogenously spiked cel-miR-39 and 6 targeted miRNAs in plasma from 20 healthy individuals. RESULTS: There were significant differences between the tested methods. Although column-based extraction methods were highly effective for the isolation of endogenous miRNA, phenol extraction combined with column-based miRNA purification and ultracentrifugation resulted in lower quality and quantity of isolated miRNA. Among all extraction methods, the ubiquitously expressed miR-16 was represented with high abundance when compared with other targeted miRNAs. In addition, the use of miR-16 as an endogenous control for normalization of quantification cycle values resulted in a decreased variability of column-based cfmiRNA extraction methods. Cluster analysis of normalized NGS counts clearly indicated a method-dependent bias. CONCLUSIONS: The choice of plasma miRNA extraction methods affects the selection of potential miRNA marker candidates and mechanistic interpretation of results, which should be done with caution, particularly across studies using different protocols.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023686
003      
CZ-PrNML
005      
20201214130831.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1373/clinchem.2019.303271 $2 doi
035    __
$a (PubMed)31235535
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kloten, Vera $u Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany.
245    10
$a Multicenter Evaluation of Circulating Plasma MicroRNA Extraction Technologies for the Development of Clinically Feasible Reverse Transcription Quantitative PCR and Next-Generation Sequencing Analytical Work Flows / $c V. Kloten, MHD. Neumann, F. Di Pasquale, M. Sprenger-Haussels, JM. Shaffer, M. Schlumpberger, A. Herdean, F. Betsou, W. Ammerlaan, T. Af Hällström, E. Serkkola, T. Forsman, E. Lianidou, R. Sjöback, M. Kubista, S. Bender, R. Lampignano, T. Krahn, T. Schlange, CANCER-ID consortium,
520    9_
$a BACKGROUND: In human body fluids, microRNA (miRNA) can be found as circulating cell-free miRNA (cfmiRNA), as well as secreted into extracellular vesicles (EVmiRNA). miRNAs are being intensively evaluated as minimally invasive liquid biopsy biomarkers in patients with cancer. The growing interest in developing clinical assays for circulating miRNA necessitates careful consideration of confounding effects of preanalytical and analytical parameters. METHODS: By using reverse transcription quantitative real-time PCR and next-generation sequencing (NGS), we compared extraction efficiencies of 5 different protocols for cfmiRNA and 2 protocols for EVmiRNA isolation in a multicentric manner. The efficiency of the different extraction methods was evaluated by measuring exogenously spiked cel-miR-39 and 6 targeted miRNAs in plasma from 20 healthy individuals. RESULTS: There were significant differences between the tested methods. Although column-based extraction methods were highly effective for the isolation of endogenous miRNA, phenol extraction combined with column-based miRNA purification and ultracentrifugation resulted in lower quality and quantity of isolated miRNA. Among all extraction methods, the ubiquitously expressed miR-16 was represented with high abundance when compared with other targeted miRNAs. In addition, the use of miR-16 as an endogenous control for normalization of quantification cycle values resulted in a decreased variability of column-based cfmiRNA extraction methods. Cluster analysis of normalized NGS counts clearly indicated a method-dependent bias. CONCLUSIONS: The choice of plasma miRNA extraction methods affects the selection of potential miRNA marker candidates and mechanistic interpretation of results, which should be done with caution, particularly across studies using different protocols.
650    _2
$a senioři $7 D000368
650    _2
$a zvířata $7 D000818
650    _2
$a nádorové biomarkery $x krev $x izolace a purifikace $7 D014408
650    _2
$a Caenorhabditis elegans $x chemie $7 D017173
650    _2
$a chemická frakcionace $x metody $7 D005591
650    _2
$a cirkulující mikroRNA $x krev $x izolace a purifikace $7 D000074166
650    _2
$a extracelulární vezikuly $x chemie $7 D000067128
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a kvantitativní polymerázová řetězová reakce $x metody $7 D060888
650    _2
$a polymerázová řetězová reakce s reverzní transkripcí $x metody $7 D020133
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Neumann, Martin H D $u QIAGEN GmbH, Hilden, Germany.
700    1_
$a Di Pasquale, Francesca $u QIAGEN GmbH, Hilden, Germany.
700    1_
$a Sprenger-Haussels, Markus $u QIAGEN GmbH, Hilden, Germany.
700    1_
$a Shaffer, Jonathan M $u QIAGEN, Frederick, MD.
700    1_
$a Schlumpberger, Martin $u QIAGEN GmbH, Hilden, Germany.
700    1_
$a Herdean, Andrei $u TATAA Biocenter AB, Gothenburg, Sweden.
700    1_
$a Betsou, Fay $u Integrated BioBank of Luxembourg, Dudelange, Luxembourg.
700    1_
$a Ammerlaan, Wim $u Integrated BioBank of Luxembourg, Dudelange, Luxembourg.
700    1_
$a Af Hällström, Taija $u AstraZeneca, Espoo, Finland. Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. Orion Pharma, Orion Corporation, Espoo, Finland.
700    1_
$a Serkkola, Elina $u Orion Pharma, Orion Corporation, Espoo, Finland.
700    1_
$a Forsman, Tarja $u Orion Pharma, Orion Corporation, Espoo, Finland.
700    1_
$a Lianidou, Evi $u University of Athens, Athens, Greece.
700    1_
$a Sjöback, Robert $u TATAA Biocenter AB, Gothenburg, Sweden.
700    1_
$a Kubista, Mikael $u TATAA Biocenter AB, Gothenburg, Sweden. Institute of Biotechnology CAS, v. v. i., Vestec, Czech Republic.
700    1_
$a Bender, Sebastian $u Bayer AG, Pharmaceutical Division, Translational Assay Technology, Berlin, Germany.
700    1_
$a Lampignano, Rita $u Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany.
700    1_
$a Krahn, Thomas $u Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany.
700    1_
$a Schlange, Thomas $u Bayer AG, Pharmaceutical Division, Biomarker Research, Wuppertal, Germany; thomas.schlange@bayer.com.
710    2_
$a CANCER-ID consortium
773    0_
$w MED00001129 $t Clinical chemistry $x 1530-8561 $g Roč. 65, č. 9 (2019), s. 1132-1140
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31235535 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214130829 $b ABA008
999    __
$a ok $b bmc $g 1596005 $s 1114362
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 65 $c 9 $d 1132-1140 $e 20190624 $i 1530-8561 $m Clinical chemistry $n Clin Chem $x MED00001129
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...