-
Je něco špatně v tomto záznamu ?
Modified linear regression predicts drug-target interactions accurately
K. Buza, L. Peška, J. Koller,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- cílená molekulární terapie * MeSH
- léčivé přípravky metabolismus MeSH
- lineární modely MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
State-of-the-art approaches for the prediction of drug-target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical reality compared with conventional regression techniques. Furthermore, we propose to use an asymmetric loss model with BLM to predict drug-target interactions accurately. We evaluate our approach on publicly available real-world drug-target interaction datasets. The results show that our approach outperforms state-of-the-art DTI techniques, including recent versions of BLM.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025087
- 003
- CZ-PrNML
- 005
- 20201222155042.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0230726 $2 doi
- 035 __
- $a (PubMed)32251481
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Buza, Krisztian $u Faculty of Informatics, ELTE - Eötvös Loránd University, Budapest, Hungary. Center for the Study of Complexity, Babes-Bolyai University, Cluj Napoca, Romania.
- 245 10
- $a Modified linear regression predicts drug-target interactions accurately / $c K. Buza, L. Peška, J. Koller,
- 520 9_
- $a State-of-the-art approaches for the prediction of drug-target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical reality compared with conventional regression techniques. Furthermore, we propose to use an asymmetric loss model with BLM to predict drug-target interactions accurately. We evaluate our approach on publicly available real-world drug-target interaction datasets. The results show that our approach outperforms state-of-the-art DTI techniques, including recent versions of BLM.
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a lineární modely $7 D016014
- 650 12
- $a cílená molekulární terapie $7 D058990
- 650 _2
- $a léčivé přípravky $x metabolismus $7 D004364
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Peška, Ladislav $u Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
- 700 1_
- $a Koller, Júlia $u Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 15, č. 4 (2020), s. e0230726
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32251481 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155039 $b ABA008
- 999 __
- $a ok $b bmc $g 1599232 $s 1115773
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 15 $c 4 $d e0230726 $e 20200406 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20201125