-
Je něco špatně v tomto záznamu ?
External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules
DR. Baldwin, J. Gustafson, L. Pickup, C. Arteta, P. Novotny, J. Declerck, T. Kadir, C. Figueiras, A. Sterba, A. Exell, V. Potesil, P. Holland, H. Spence, A. Clubley, E. O'Dowd, M. Clark, V. Ashford-Turner, ME. Callister, FV. Gleeson,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem, validační studie
NLK
ProQuest Central
od 1946-03-01 do Před 6 měsíci
Open Access Digital Library
od 1946-03-01
Health & Medicine (ProQuest)
od 1946-03-01 do Před 6 měsíci
- MeSH
- algoritmy MeSH
- časná detekce nádoru metody MeSH
- databáze faktografické MeSH
- dospělí MeSH
- hodnocení rizik MeSH
- incidence MeSH
- invazivní růst nádoru patologie MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mnohočetné plicní uzly epidemiologie patologie patofyziologie MeSH
- nádorová transformace buněk patologie MeSH
- nádory plic epidemiologie patologie patofyziologie MeSH
- neuronové sítě * MeSH
- plocha pod křivkou MeSH
- prediktivní hodnota testů MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- ROC křivka MeSH
- senioři MeSH
- staging nádorů MeSH
- umělá inteligence * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
BACKGROUND: Estimation of the risk of malignancy in pulmonary nodules detected by CT is central in clinical management. The use of artificial intelligence (AI) offers an opportunity to improve risk prediction. Here we compare the performance of an AI algorithm, the lung cancer prediction convolutional neural network (LCP-CNN), with that of the Brock University model, recommended in UK guidelines. METHODS: A dataset of incidentally detected pulmonary nodules measuring 5-15 mm was collected retrospectively from three UK hospitals for use in a validation study. Ground truth diagnosis for each nodule was based on histology (required for any cancer), resolution, stability or (for pulmonary lymph nodes only) expert opinion. There were 1397 nodules in 1187 patients, of which 234 nodules in 229 (19.3%) patients were cancer. Model discrimination and performance statistics at predefined score thresholds were compared between the Brock model and the LCP-CNN. RESULTS: The area under the curve for LCP-CNN was 89.6% (95% CI 87.6 to 91.5), compared with 86.8% (95% CI 84.3 to 89.1) for the Brock model (p≤0.005). Using the LCP-CNN, we found that 24.5% of nodules scored below the lowest cancer nodule score, compared with 10.9% using the Brock score. Using the predefined thresholds, we found that the LCP-CNN gave one false negative (0.4% of cancers), whereas the Brock model gave six (2.5%), while specificity statistics were similar between the two models. CONCLUSION: The LCP-CNN score has better discrimination and allows a larger proportion of benign nodules to be identified without missing cancers than the Brock model. This has the potential to substantially reduce the proportion of surveillance CT scans required and thus save significant resources.
Motol Teaching Hospital 5 Prague Czech Republic
Oxford University Hospitals NHS Foundation Trust Oxford Oxfordshire UK
Radiology Churchill Hospital Oxford UK
Radiology Leeds Teaching Hospitals NHS Trust Leeds UK
Radiology Nottingham University Hospitals NHS Trust Nottingham UK
Respiratory Medicine Glenfield General Hospital Leicester UK
Respiratory Medicine Leeds Teaching Hospitals NHS Trust Leeds UK
Respiratory Medicine Nottingham University Hospitals City Campus Nottingham UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025125
- 003
- CZ-PrNML
- 005
- 20201222153713.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1136/thoraxjnl-2019-214104 $2 doi
- 035 __
- $a (PubMed)32139611
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Baldwin, David R $u Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham, UK david.baldwin@nuh.nhs.uk.
- 245 10
- $a External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules / $c DR. Baldwin, J. Gustafson, L. Pickup, C. Arteta, P. Novotny, J. Declerck, T. Kadir, C. Figueiras, A. Sterba, A. Exell, V. Potesil, P. Holland, H. Spence, A. Clubley, E. O'Dowd, M. Clark, V. Ashford-Turner, ME. Callister, FV. Gleeson,
- 520 9_
- $a BACKGROUND: Estimation of the risk of malignancy in pulmonary nodules detected by CT is central in clinical management. The use of artificial intelligence (AI) offers an opportunity to improve risk prediction. Here we compare the performance of an AI algorithm, the lung cancer prediction convolutional neural network (LCP-CNN), with that of the Brock University model, recommended in UK guidelines. METHODS: A dataset of incidentally detected pulmonary nodules measuring 5-15 mm was collected retrospectively from three UK hospitals for use in a validation study. Ground truth diagnosis for each nodule was based on histology (required for any cancer), resolution, stability or (for pulmonary lymph nodes only) expert opinion. There were 1397 nodules in 1187 patients, of which 234 nodules in 229 (19.3%) patients were cancer. Model discrimination and performance statistics at predefined score thresholds were compared between the Brock model and the LCP-CNN. RESULTS: The area under the curve for LCP-CNN was 89.6% (95% CI 87.6 to 91.5), compared with 86.8% (95% CI 84.3 to 89.1) for the Brock model (p≤0.005). Using the LCP-CNN, we found that 24.5% of nodules scored below the lowest cancer nodule score, compared with 10.9% using the Brock score. Using the predefined thresholds, we found that the LCP-CNN gave one false negative (0.4% of cancers), whereas the Brock model gave six (2.5%), while specificity statistics were similar between the two models. CONCLUSION: The LCP-CNN score has better discrimination and allows a larger proportion of benign nodules to be identified without missing cancers than the Brock model. This has the potential to substantially reduce the proportion of surveillance CT scans required and thus save significant resources.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a plocha pod křivkou $7 D019540
- 650 12
- $a umělá inteligence $7 D001185
- 650 _2
- $a nádorová transformace buněk $x patologie $7 D002471
- 650 _2
- $a kohortové studie $7 D015331
- 650 _2
- $a databáze faktografické $7 D016208
- 650 _2
- $a časná detekce nádoru $x metody $7 D055088
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a incidence $7 D015994
- 650 _2
- $a nádory plic $x epidemiologie $x patologie $x patofyziologie $7 D008175
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a mnohočetné plicní uzly $x epidemiologie $x patologie $x patofyziologie $7 D055613
- 650 _2
- $a invazivní růst nádoru $x patologie $7 D009361
- 650 _2
- $a staging nádorů $7 D009367
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a prediktivní hodnota testů $7 D011237
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a ROC křivka $7 D012372
- 650 _2
- $a retrospektivní studie $7 D012189
- 650 _2
- $a hodnocení rizik $7 D018570
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a multicentrická studie $7 D016448
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a validační studie $7 D023361
- 700 1_
- $a Gustafson, Jennifer $u Radiology, Churchill Hospital, Oxford, UK.
- 700 1_
- $a Pickup, Lyndsey $u Optellum Ltd, Oxford, UK.
- 700 1_
- $a Arteta, Carlos $u Optellum Ltd, Oxford, UK.
- 700 1_
- $a Novotny, Petr $u Respiratory Medicine, Glenfield General Hospital, Leicester, UK.
- 700 1_
- $a Declerck, Jerome $u Optellum Ltd, Oxford, UK.
- 700 1_
- $a Kadir, Timor $u Optellum Ltd, Oxford, UK.
- 700 1_
- $a Figueiras, Catarina $u Radiology, Churchill Hospital, Oxford, UK.
- 700 1_
- $a Sterba, Albert $u Motol Teaching Hospital V, Prague, Czech Republic.
- 700 1_
- $a Exell, Alan $u Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.
- 700 1_
- $a Potesil, Vaclav $u Optellum Ltd, Oxford, UK.
- 700 1_
- $a Holland, Paul $u Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
- 700 1_
- $a Spence, Hazel $u Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
- 700 1_
- $a Clubley, Alison $u Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
- 700 1_
- $a O'Dowd, Emma $u Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham, UK.
- 700 1_
- $a Clark, Matthew $u Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- 700 1_
- $a Ashford-Turner, Victoria $u Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- 700 1_
- $a Callister, Matthew Ej $u Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- 700 1_
- $a Gleeson, Fergus V $u Radiology, Churchill Hospital, Oxford, UK.
- 773 0_
- $w MED00004515 $t Thorax $x 1468-3296 $g Roč. 75, č. 4 (2020), s. 306-312
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32139611 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222153709 $b ABA008
- 999 __
- $a ok $b bmc $g 1599270 $s 1115811
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 75 $c 4 $d 306-312 $e 20200305 $i 1468-3296 $m Thorax $n Thorax $x MED00004515
- LZP __
- $a Pubmed-20201125