Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

NERDD: a web portal providing access to in silico tools for drug discovery

C. Stork, G. Embruch, M. Šícho, C. de Bruyn Kops, Y. Chen, D. Svozil, J. Kirchmair,

. 2020 ; 36 (4) : 1291-1292. [pub] 20200215

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025197

SUMMARY: The New E-Resource for Drug Discovery (NERDD) is a quickly expanding web portal focused on the provision of peer-reviewed in silico tools for drug discovery. NERDD currently hosts tools for predicting the sites of metabolism (FAME) and metabolites (GLORY) of small organic molecules, for flagging compounds that are likely to interfere with biological assays (Hit Dexter), and for identifying natural products and natural product derivatives in large compound collections (NP-Scout). Several additional models and components are currently in development. AVAILABILITY AND IMPLEMENTATION: The NERDD web server is available at https://nerdd.zbh.uni-hamburg.de. Most tools are also available as software packages for local installation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025197
003      
CZ-PrNML
005      
20220512083410.0
007      
ta
008      
201125s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/bioinformatics/btz695 $2 doi
035    __
$a (PubMed)32077475
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Stork, Conrad $u Department of Informatics, Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Center for Bioinformatics (ZBH), Hamburg 20146, Germany.
245    10
$a NERDD: a web portal providing access to in silico tools for drug discovery / $c C. Stork, G. Embruch, M. Šícho, C. de Bruyn Kops, Y. Chen, D. Svozil, J. Kirchmair,
520    9_
$a SUMMARY: The New E-Resource for Drug Discovery (NERDD) is a quickly expanding web portal focused on the provision of peer-reviewed in silico tools for drug discovery. NERDD currently hosts tools for predicting the sites of metabolism (FAME) and metabolites (GLORY) of small organic molecules, for flagging compounds that are likely to interfere with biological assays (Hit Dexter), and for identifying natural products and natural product derivatives in large compound collections (NP-Scout). Several additional models and components are currently in development. AVAILABILITY AND IMPLEMENTATION: The NERDD web server is available at https://nerdd.zbh.uni-hamburg.de. Most tools are also available as software packages for local installation.
650    12
$a biologické přípravky $7 D001688
650    _2
$a počítačová simulace $7 D003198
650    _2
$a počítače $7 D003201
650    12
$a objevování léků $7 D055808
650    _2
$a internet $7 D020407
650    _2
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Embruch, Gerd $u Department of Informatics, Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Center for Bioinformatics (ZBH), Hamburg 20146, Germany.
700    1_
$a Šícho, Martin $u Department of Informatics and Chemistry, CZ-OPENSCREEN: National Infrastructure for Chemical Biology, University of Chemistry and Technology Prague, Faculty of Chemical Technology, 166 28 Prague 6, Czech Republic.
700    1_
$a de Bruyn Kops, Christina $u Department of Informatics, Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Center for Bioinformatics (ZBH), Hamburg 20146, Germany.
700    1_
$a Chen, Ya $u Department of Informatics, Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Center for Bioinformatics (ZBH), Hamburg 20146, Germany.
700    1_
$a Svozil, Daniel, $u Department of Informatics and Chemistry, CZ-OPENSCREEN: National Infrastructure for Chemical Biology, University of Chemistry and Technology Prague, Faculty of Chemical Technology, 166 28 Prague 6, Czech Republic. $d 1971- $7 xx0145391
700    1_
$a Kirchmair, Johannes $u Department of Informatics, Universität Hamburg, Faculty of Mathematics, Informatics and Natural Sciences, Center for Bioinformatics (ZBH), Hamburg 20146, Germany. Department of Chemistry, University of Bergen, Bergen N-5020, Norway. Computational Biology Unit (CBU), Bergen N-5020, Norway.
773    0_
$w MED00008115 $t Bioinformatics (Oxford, England) $x 1367-4811 $g Roč. 36, č. 4 (2020), s. 1291-1292
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32077475 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20220512083404 $b ABA008
999    __
$a ok $b bmc $g 1599342 $s 1115883
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 36 $c 4 $d 1291-1292 $e 20200215 $i 1367-4811 $m Bioinformatics $n Bioinformatics $x MED00008115
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...