-
Something wrong with this record ?
Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG
C. Reuben, P. Karoly, DR. Freestone, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, DB. Grayden, MJ. Cook, L. Kuhlmann,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
GNT1160815
National Health and Medical Research Council - International
Epilepsy Foundation - International
NLK
Free Medical Journals
from 1997 to 1 year ago
Wiley Free Content
from 1997 to 4 years ago
PubMed
31883345
DOI
10.1111/epi.16418
Knihovny.cz E-resources
- MeSH
- Algorithms * MeSH
- Crowdsourcing MeSH
- Electroencephalography MeSH
- Electrocorticography methods MeSH
- Epilepsies, Partial diagnosis MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Predictive Value of Tests MeSH
- Drug Resistant Epilepsy diagnosis MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Sleep MeSH
- Machine Learning MeSH
- Feasibility Studies MeSH
- Seizures diagnosis MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state-of-the-art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning-based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient-specific sleep-wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.
Areté Associates Arlington VA USA
Department of Medicine St Vincent's Hospital The University of Melbourne Parkville Australia
Department of Physics National University of Singapore Singapore Singapore
Irish Centre for Fetal and Neonatal Translational Research University College Cork Cork Ireland
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025224
- 003
- CZ-PrNML
- 005
- 20201222155123.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/epi.16418 $2 doi
- 035 __
- $a (PubMed)31883345
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Reuben, Chip $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.
- 245 10
- $a Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG / $c C. Reuben, P. Karoly, DR. Freestone, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, DB. Grayden, MJ. Cook, L. Kuhlmann,
- 520 9_
- $a Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state-of-the-art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning-based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient-specific sleep-wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a crowdsourcing $7 D063045
- 650 _2
- $a refrakterní epilepsie $x diagnóza $7 D000069279
- 650 _2
- $a elektrokortikografie $x metody $7 D000069280
- 650 _2
- $a elektroencefalografie $7 D004569
- 650 _2
- $a epilepsie parciální $x diagnóza $7 D004828
- 650 _2
- $a studie proveditelnosti $7 D005240
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a prediktivní hodnota testů $7 D011237
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a záchvaty $x diagnóza $7 D012640
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a spánek $7 D012890
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Karoly, Philippa $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
- 700 1_
- $a Freestone, Dean R $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.
- 700 1_
- $a Temko, Andriy $u Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland.
- 700 1_
- $a Barachant, Alexandre $u Grenoble, France.
- 700 1_
- $a Li, Feng $u Minneapolis, MN, USA.
- 700 1_
- $a Titericz, Gilberto $u San Francisco, CA, USA.
- 700 1_
- $a Lang, Brian W $u Areté Associates, Arlington, VA, USA.
- 700 1_
- $a Lavery, Daniel $u Areté Associates, Arlington, VA, USA.
- 700 1_
- $a Roman, Kelly $u Areté Associates, Arlington, VA, USA.
- 700 1_
- $a Broadhead, Derek $u Areté Associates, Arlington, VA, USA.
- 700 1_
- $a Jones, Gareth $u UCL Ear Institute, London, UK.
- 700 1_
- $a Tang, Qingnan $u Department of Physics, National University of Singapore, Singapore, Singapore.
- 700 1_
- $a Ivanenko, Irina $u Kyiv, Ukraine.
- 700 1_
- $a Panichev, Oleg $u Kyiv, Ukraine.
- 700 1_
- $a Proix, Timothée $u Department of Neuroscience, Brown University, Providence, RI, USA. Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, USA.
- 700 1_
- $a Náhlík, Michal $u Prague, Czech Republic.
- 700 1_
- $a Grunberg, Daniel B $u Solverworld, Arlington, MA, USA.
- 700 1_
- $a Grayden, David B $u NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
- 700 1_
- $a Cook, Mark J $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.
- 700 1_
- $a Kuhlmann, Levin $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia. Faculty of Information Technology, Monash University, Clayton, Australia.
- 773 0_
- $w MED00001567 $t Epilepsia $x 1528-1167 $g Roč. 61, č. 2 (2020), s. e7-e12
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31883345 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155119 $b ABA008
- 999 __
- $a ok $b bmc $g 1599369 $s 1115910
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 61 $c 2 $d e7-e12 $e 20191228 $i 1528-1167 $m Epilepsia $n Epilepsia $x MED00001567
- GRA __
- $a GNT1160815 $p National Health and Medical Research Council $2 International
- GRA __
- $p Epilepsy Foundation $2 International
- LZP __
- $a Pubmed-20201125