• Je něco špatně v tomto záznamu ?

Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG

C. Reuben, P. Karoly, DR. Freestone, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, DB. Grayden, MJ. Cook, L. Kuhlmann,

. 2020 ; 61 (2) : e7-e12. [pub] 20191228

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025224

Grantová podpora
GNT1160815 National Health and Medical Research Council - International
Epilepsy Foundation - International

Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state-of-the-art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning-based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient-specific sleep-wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025224
003      
CZ-PrNML
005      
20201222155123.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/epi.16418 $2 doi
035    __
$a (PubMed)31883345
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Reuben, Chip $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.
245    10
$a Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG / $c C. Reuben, P. Karoly, DR. Freestone, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, DB. Grayden, MJ. Cook, L. Kuhlmann,
520    9_
$a Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state-of-the-art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning-based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient-specific sleep-wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.
650    12
$a algoritmy $7 D000465
650    _2
$a crowdsourcing $7 D063045
650    _2
$a refrakterní epilepsie $x diagnóza $7 D000069279
650    _2
$a elektrokortikografie $x metody $7 D000069280
650    _2
$a elektroencefalografie $7 D004569
650    _2
$a epilepsie parciální $x diagnóza $7 D004828
650    _2
$a studie proveditelnosti $7 D005240
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a prediktivní hodnota testů $7 D011237
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a záchvaty $x diagnóza $7 D012640
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a spánek $7 D012890
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Karoly, Philippa $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
700    1_
$a Freestone, Dean R $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.
700    1_
$a Temko, Andriy $u Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland.
700    1_
$a Barachant, Alexandre $u Grenoble, France.
700    1_
$a Li, Feng $u Minneapolis, MN, USA.
700    1_
$a Titericz, Gilberto $u San Francisco, CA, USA.
700    1_
$a Lang, Brian W $u Areté Associates, Arlington, VA, USA.
700    1_
$a Lavery, Daniel $u Areté Associates, Arlington, VA, USA.
700    1_
$a Roman, Kelly $u Areté Associates, Arlington, VA, USA.
700    1_
$a Broadhead, Derek $u Areté Associates, Arlington, VA, USA.
700    1_
$a Jones, Gareth $u UCL Ear Institute, London, UK.
700    1_
$a Tang, Qingnan $u Department of Physics, National University of Singapore, Singapore, Singapore.
700    1_
$a Ivanenko, Irina $u Kyiv, Ukraine.
700    1_
$a Panichev, Oleg $u Kyiv, Ukraine.
700    1_
$a Proix, Timothée $u Department of Neuroscience, Brown University, Providence, RI, USA. Center for Neurorestoration & Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, USA.
700    1_
$a Náhlík, Michal $u Prague, Czech Republic.
700    1_
$a Grunberg, Daniel B $u Solverworld, Arlington, MA, USA.
700    1_
$a Grayden, David B $u NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
700    1_
$a Cook, Mark J $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia.
700    1_
$a Kuhlmann, Levin $u Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Parkville, Australia. Faculty of Information Technology, Monash University, Clayton, Australia.
773    0_
$w MED00001567 $t Epilepsia $x 1528-1167 $g Roč. 61, č. 2 (2020), s. e7-e12
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31883345 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155119 $b ABA008
999    __
$a ok $b bmc $g 1599369 $s 1115910
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 61 $c 2 $d e7-e12 $e 20191228 $i 1528-1167 $m Epilepsia $n Epilepsia $x MED00001567
GRA    __
$a GNT1160815 $p National Health and Medical Research Council $2 International
GRA    __
$p Epilepsy Foundation $2 International
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...