Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Performance Comparison of Reverse Transcriptases for Single-Cell Studies

D. Zucha, P. Androvic, M. Kubista, L. Valihrach,

. 2020 ; 66 (1) : 217-228. [pub] 20200101

Jazyk angličtina Země Velká Británie

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025292

BACKGROUND: Recent advances allowing quantification of RNA from single cells are revolutionizing biology and medicine. Currently, almost all single-cell transcriptomic protocols rely on reverse transcription (RT). However, RT is recognized as a known source of variability, particularly with low amounts of RNA. Recently, several new reverse transcriptases (RTases) with the potential to decrease the loss of information have been developed, but knowledge of their performance is limited. METHODS: We compared the performance of 11 RTases in quantitative reverse transcription PCR (RT-qPCR) on single-cell and 100-cell bulk templates, using 2 priming strategies: a conventional mixture of random hexamers with oligo(dT)s and a reduced concentration of oligo(dT)s mimicking common single-cell RNA-sequencing protocols. Depending on their performance, 2 RTases were further tested in a high-throughput single-cell experiment. RESULTS: All tested RTases demonstrated high precision (R2 > 0.9445). The most pronounced differences were found in their ability to capture rare transcripts (0%-90% reaction positivity rate) and in their absolute reaction yield (7.3%-137.9%). RTase performance and reproducibility were compared with Z scores. The 2 best-performing enzymes were Maxima H- and SuperScript IV. The validity of the obtained results was confirmed in a follow-up single-cell model experiment. The better-performing enzyme (Maxima H-) increased the sensitivity of the single-cell experiment and improved resolution in the clustering analysis over the commonly used RTase (SuperScript II). CONCLUSIONS: Our comprehensive comparison of 11 RTases in low RNA input conditions identified 2 best-performing enzymes. Our results provide a point of reference for the improvement of current single-cell quantification protocols.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025292
003      
CZ-PrNML
005      
20201222153805.0
007      
ta
008      
201125s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1373/clinchem.2019.307835 $2 doi
035    __
$a (PubMed)31699702
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Zucha, Daniel $u Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czech Republic. Faculty of Science, Charles University, Prague, Czech Republic.
245    10
$a Performance Comparison of Reverse Transcriptases for Single-Cell Studies / $c D. Zucha, P. Androvic, M. Kubista, L. Valihrach,
520    9_
$a BACKGROUND: Recent advances allowing quantification of RNA from single cells are revolutionizing biology and medicine. Currently, almost all single-cell transcriptomic protocols rely on reverse transcription (RT). However, RT is recognized as a known source of variability, particularly with low amounts of RNA. Recently, several new reverse transcriptases (RTases) with the potential to decrease the loss of information have been developed, but knowledge of their performance is limited. METHODS: We compared the performance of 11 RTases in quantitative reverse transcription PCR (RT-qPCR) on single-cell and 100-cell bulk templates, using 2 priming strategies: a conventional mixture of random hexamers with oligo(dT)s and a reduced concentration of oligo(dT)s mimicking common single-cell RNA-sequencing protocols. Depending on their performance, 2 RTases were further tested in a high-throughput single-cell experiment. RESULTS: All tested RTases demonstrated high precision (R2 > 0.9445). The most pronounced differences were found in their ability to capture rare transcripts (0%-90% reaction positivity rate) and in their absolute reaction yield (7.3%-137.9%). RTase performance and reproducibility were compared with Z scores. The 2 best-performing enzymes were Maxima H- and SuperScript IV. The validity of the obtained results was confirmed in a follow-up single-cell model experiment. The better-performing enzyme (Maxima H-) increased the sensitivity of the single-cell experiment and improved resolution in the clustering analysis over the commonly used RTase (SuperScript II). CONCLUSIONS: Our comprehensive comparison of 11 RTases in low RNA input conditions identified 2 best-performing enzymes. Our results provide a point of reference for the improvement of current single-cell quantification protocols.
650    _2
$a zvířata $7 D000818
650    _2
$a DNA primery $x metabolismus $7 D017931
650    _2
$a lidé $7 D006801
650    _2
$a RNA $x metabolismus $7 D012313
650    _2
$a reverzní transkriptasa $x metabolismus $7 D012194
650    _2
$a kvantitativní polymerázová řetězová reakce $x metody $7 D060888
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a polymerázová řetězová reakce s reverzní transkripcí $x metody $7 D020133
650    _2
$a analýza jednotlivých buněk $7 D059010
650    _2
$a superoxiddismutasa 1 $x genetika $7 D000072105
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Androvic, Peter $u Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czech Republic. Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic.
700    1_
$a Kubista, Mikael $u Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czech Republic. TATAA Biocenter AB, Gothenburg, Sweden.
700    1_
$a Valihrach, Lukas $u Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czech Republic.
773    0_
$w MED00001129 $t Clinical chemistry $x 1530-8561 $g Roč. 66, č. 1 (2020), s. 217-228
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31699702 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222153801 $b ABA008
999    __
$a ok $b bmc $g 1599437 $s 1115978
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 66 $c 1 $d 217-228 $e 20200101 $i 1530-8561 $m Clinical chemistry $n Clin Chem $x MED00001129
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...