-
Je něco špatně v tomto záznamu ?
A Deep Learning Framework for Predicting Response to Therapy in Cancer
T. Sakellaropoulos, K. Vougas, S. Narang, F. Koinis, A. Kotsinas, A. Polyzos, TJ. Moss, S. Piha-Paul, H. Zhou, E. Kardala, E. Damianidou, LG. Alexopoulos, I. Aifantis, PA. Townsend, MI. Panayiotidis, P. Sfikakis, J. Bartek, RC. Fitzgerald, D....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_PC_14112
Medical Research Council - United Kingdom
NLK
Cell Press Free Archives
od 2012
Directory of Open Access Journals
od 2012
Free Medical Journals
od 2012
Freely Accessible Science Journals
od 2012-01-26
Open Access Digital Library
od 2012-01-26
Open Access Digital Library
od 2012-01-01
Elsevier Open Access Journals
od 2012-01-26
- MeSH
- analýza přežití MeSH
- chemorezistence * MeSH
- deep learning * MeSH
- individualizovaná medicína metody MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A major challenge in cancer treatment is predicting clinical response to anti-cancer drugs on a personalized basis. Using a pharmacogenomics database of 1,001 cancer cell lines, we trained deep neural networks for prediction of drug response and assessed their performance on multiple clinical cohorts. We demonstrate that deep neural networks outperform the current state in machine learning frameworks. We provide a proof of concept for the use of deep neural network-based frameworks to aid precision oncology strategies.
Applied Bioinformatics Laboratories NYU School of Medicine New York NY 10016 USA
Biomedical Research Foundation of the Academy of Athens 4 Soranou Ephessiou Str Athens 11527 Greece
Department of Applied Sciences Northumbria University Newcastle upon Tyne NE1 8ST UK
Department of Pathology NYU School of Medicine New York NY 10016 USA
Laura and Isaac Perlmutter Cancer Center NYU School of Medicine New York NY 10016 USA
School of Mechanical Engineering National Technical University of Athens Zografou 15780 Greece
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025406
- 003
- CZ-PrNML
- 005
- 20201222155158.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.celrep.2019.11.017 $2 doi
- 035 __
- $a (PubMed)31825821
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Sakellaropoulos, Theodore $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
- 245 12
- $a A Deep Learning Framework for Predicting Response to Therapy in Cancer / $c T. Sakellaropoulos, K. Vougas, S. Narang, F. Koinis, A. Kotsinas, A. Polyzos, TJ. Moss, S. Piha-Paul, H. Zhou, E. Kardala, E. Damianidou, LG. Alexopoulos, I. Aifantis, PA. Townsend, MI. Panayiotidis, P. Sfikakis, J. Bartek, RC. Fitzgerald, D. Thanos, KR. Mills Shaw, R. Petty, A. Tsirigos, VG. Gorgoulis,
- 520 9_
- $a A major challenge in cancer treatment is predicting clinical response to anti-cancer drugs on a personalized basis. Using a pharmacogenomics database of 1,001 cancer cell lines, we trained deep neural networks for prediction of drug response and assessed their performance on multiple clinical cohorts. We demonstrate that deep neural networks outperform the current state in machine learning frameworks. We provide a proof of concept for the use of deep neural network-based frameworks to aid precision oncology strategies.
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 12
- $a deep learning $7 D000077321
- 650 12
- $a chemorezistence $7 D019008
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nádory $x farmakoterapie $x genetika $x metabolismus $7 D009369
- 650 _2
- $a individualizovaná medicína $x metody $7 D057285
- 650 _2
- $a analýza přežití $7 D016019
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vougas, Konstantinos $u Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens 11527, Greece; Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece. Electronic address: kvougas@bioacademy.gr.
- 700 1_
- $a Narang, Sonali $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
- 700 1_
- $a Koinis, Filippos $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece.
- 700 1_
- $a Kotsinas, Athanassios $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece.
- 700 1_
- $a Polyzos, Alexander $u Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
- 700 1_
- $a Moss, Tyler J $u Sheikh Khalifa Bin Zayed al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
- 700 1_
- $a Piha-Paul, Sarina $u Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
- 700 1_
- $a Zhou, Hua $u Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA.
- 700 1_
- $a Kardala, Eleni $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece.
- 700 1_
- $a Damianidou, Eleni $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece.
- 700 1_
- $a Alexopoulos, Leonidas G $u School of Mechanical Engineering, National Technical University of Athens, Zografou 15780, Greece.
- 700 1_
- $a Aifantis, Iannis $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
- 700 1_
- $a Townsend, Paul A $u Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M20 4GJ, UK.
- 700 1_
- $a Panayiotidis, Mihalis I $u Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Department of Electron Microscopy & Molecular Pathology, Cyprus Institute of Neurology & Genetics, Nicosia, 2371, Cyprus.
- 700 1_
- $a Sfikakis, Petros $u 1st Department of Propaedeutic Internal Medicine, Medical School, Laikon Hospital, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece.
- 700 1_
- $a Bartek, Jiri $u Genome Integrity Unit, Danish Cancer Society Research Centre, Strandboulevarden 49, Copenhagen 2100, Denmark; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská, Olomouc 1333/5 779 00, Czech Republic; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden.
- 700 1_
- $a Fitzgerald, Rebecca C $u Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK.
- 700 1_
- $a Thanos, Dimitris $u Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens 11527, Greece.
- 700 1_
- $a Mills Shaw, Kenna R $u Sheikh Khalifa Bin Zayed al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
- 700 1_
- $a Petty, Russell $u Division of Molecular and Clinical Medicine, Ninewells Hospital and School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
- 700 1_
- $a Tsirigos, Aristotelis $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA. Electronic address: aristotelis.tsirigos@nyulangone.org.
- 700 1_
- $a Gorgoulis, Vassilis G $u Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens 11527, Greece; Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M20 4GJ, UK; 1st Department of Propaedeutic Internal Medicine, Medical School, Laikon Hospital, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Athens 11527, Greece. Electronic address: vgorg@med.uoa.gr.
- 773 0_
- $w MED00188029 $t Cell reports $x 2211-1247 $g Roč. 29, č. 11 (2019), s. 3367-3373.e4
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31825821 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155154 $b ABA008
- 999 __
- $a ok $b bmc $g 1599551 $s 1116092
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 29 $c 11 $d 3367-3373.e4 $e 20191210 $i 2211-1247 $m Cell reports $n Cell Rep $x MED00188029
- GRA __
- $a MC_PC_14112 $p Medical Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20201125