Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Spatially regularized estimation of the tissue homogeneity model parameters in DCE-MRI using proximal minimization

M. Bartoš, P. Rajmic, M. Šorel, M. Mangová, O. Keunen, R. Jiřík,

. 2019 ; 82 (6) : 2257-2272. [pub] 20190717

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025445

PURPOSE: The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in dynamic contrast-enhanced MRI (DCE-MRI) perfusion analysis, although they do not provide two important biological markers, namely, the plasma flow and the permeability-surface area product. Estimates of such markers are possible using advanced pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. However, the disadvantage of the advanced models lies in biased and uncertain estimates, especially when the estimates are computed voxelwise. The goal of this work is to improve the reliability of the estimates by including information from neighboring voxels. THEORY AND METHODS: Information from the neighboring voxels is incorporated in the estimation process through spatial regularization in the form of total variation. The spatial regularization is applied on five maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not differentiable, two proximal techniques of convex optimization are used to solve the problem numerically. RESULTS: The proposed algorithm helps to reduce noise in the estimated perfusion-parameter maps together with improving accuracy of the estimates. These conclusions are proved using a numerical phantom. In addition, experiments on real data show improved spatial consistency and readability of perfusion maps without considerable lowering of the quality of fit. CONCLUSION: The reliability of the DCE-MRI perfusion analysis using the tissue homogeneity model can be improved by employing spatial regularization. The proposed utilization of modern optimization techniques implies only slightly higher computational costs compared to the standard approach without spatial regularization.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025445
003      
CZ-PrNML
005      
20201222155209.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mrm.27874 $2 doi
035    __
$a (PubMed)31317577
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bartoš, Michal $u The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic.
245    10
$a Spatially regularized estimation of the tissue homogeneity model parameters in DCE-MRI using proximal minimization / $c M. Bartoš, P. Rajmic, M. Šorel, M. Mangová, O. Keunen, R. Jiřík,
520    9_
$a PURPOSE: The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in dynamic contrast-enhanced MRI (DCE-MRI) perfusion analysis, although they do not provide two important biological markers, namely, the plasma flow and the permeability-surface area product. Estimates of such markers are possible using advanced pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. However, the disadvantage of the advanced models lies in biased and uncertain estimates, especially when the estimates are computed voxelwise. The goal of this work is to improve the reliability of the estimates by including information from neighboring voxels. THEORY AND METHODS: Information from the neighboring voxels is incorporated in the estimation process through spatial regularization in the form of total variation. The spatial regularization is applied on five maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not differentiable, two proximal techniques of convex optimization are used to solve the problem numerically. RESULTS: The proposed algorithm helps to reduce noise in the estimated perfusion-parameter maps together with improving accuracy of the estimates. These conclusions are proved using a numerical phantom. In addition, experiments on real data show improved spatial consistency and readability of perfusion maps without considerable lowering of the quality of fit. CONCLUSION: The reliability of the DCE-MRI perfusion analysis using the tissue homogeneity model can be improved by employing spatial regularization. The proposed utilization of modern optimization techniques implies only slightly higher computational costs compared to the standard approach without spatial regularization.
650    _2
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a nádory mozku $x diagnostické zobrazování $7 D001932
650    _2
$a počítačová simulace $7 D003198
650    _2
$a kontrastní látky $x farmakologie $7 D003287
650    _2
$a glioblastom $x diagnostické zobrazování $7 D005909
650    _2
$a počítačové zpracování obrazu $7 D007091
650    12
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a perfuze $7 D010477
650    _2
$a permeabilita $7 D010539
650    _2
$a fantomy radiodiagnostické $7 D019047
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a poměr signál - šum $7 D059629
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Rajmic, Pavel $u SPLab, Department of Telecommunications, FEEC, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Šorel, Michal $u The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic.
700    1_
$a Mangová, Marie $u SPLab, Department of Telecommunications, FEEC, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Keunen, Olivier $u Norlux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.
700    1_
$a Jiřík, Radovan $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
773    0_
$w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 82, č. 6 (2019), s. 2257-2272
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31317577 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155205 $b ABA008
999    __
$a ok $b bmc $g 1599590 $s 1116131
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 82 $c 6 $d 2257-2272 $e 20190717 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...