-
Je něco špatně v tomto záznamu ?
Spatially regularized estimation of the tissue homogeneity model parameters in DCE-MRI using proximal minimization
M. Bartoš, P. Rajmic, M. Šorel, M. Mangová, O. Keunen, R. Jiřík,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Medline Complete (EBSCOhost)
od 2012-01-01 do Před 1 rokem
Wiley Free Content
od 1999
PubMed
31317577
DOI
10.1002/mrm.27874
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- fantomy radiodiagnostické MeSH
- glioblastom diagnostické zobrazování MeSH
- kontrastní látky farmakologie MeSH
- krysa rodu rattus MeSH
- magnetická rezonanční tomografie * MeSH
- mozek diagnostické zobrazování MeSH
- nádory mozku diagnostické zobrazování MeSH
- perfuze MeSH
- permeabilita MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu MeSH
- poměr signál - šum MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in dynamic contrast-enhanced MRI (DCE-MRI) perfusion analysis, although they do not provide two important biological markers, namely, the plasma flow and the permeability-surface area product. Estimates of such markers are possible using advanced pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. However, the disadvantage of the advanced models lies in biased and uncertain estimates, especially when the estimates are computed voxelwise. The goal of this work is to improve the reliability of the estimates by including information from neighboring voxels. THEORY AND METHODS: Information from the neighboring voxels is incorporated in the estimation process through spatial regularization in the form of total variation. The spatial regularization is applied on five maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not differentiable, two proximal techniques of convex optimization are used to solve the problem numerically. RESULTS: The proposed algorithm helps to reduce noise in the estimated perfusion-parameter maps together with improving accuracy of the estimates. These conclusions are proved using a numerical phantom. In addition, experiments on real data show improved spatial consistency and readability of perfusion maps without considerable lowering of the quality of fit. CONCLUSION: The reliability of the DCE-MRI perfusion analysis using the tissue homogeneity model can be improved by employing spatial regularization. The proposed utilization of modern optimization techniques implies only slightly higher computational costs compared to the standard approach without spatial regularization.
SPLab Department of Telecommunications FEEC Brno University of Technology Brno Czech Republic
The Czech Academy of Sciences Institute of Information Theory and Automation Prague Czech Republic
The Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025445
- 003
- CZ-PrNML
- 005
- 20201222155209.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mrm.27874 $2 doi
- 035 __
- $a (PubMed)31317577
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bartoš, Michal $u The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic.
- 245 10
- $a Spatially regularized estimation of the tissue homogeneity model parameters in DCE-MRI using proximal minimization / $c M. Bartoš, P. Rajmic, M. Šorel, M. Mangová, O. Keunen, R. Jiřík,
- 520 9_
- $a PURPOSE: The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in dynamic contrast-enhanced MRI (DCE-MRI) perfusion analysis, although they do not provide two important biological markers, namely, the plasma flow and the permeability-surface area product. Estimates of such markers are possible using advanced pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. However, the disadvantage of the advanced models lies in biased and uncertain estimates, especially when the estimates are computed voxelwise. The goal of this work is to improve the reliability of the estimates by including information from neighboring voxels. THEORY AND METHODS: Information from the neighboring voxels is incorporated in the estimation process through spatial regularization in the form of total variation. The spatial regularization is applied on five maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not differentiable, two proximal techniques of convex optimization are used to solve the problem numerically. RESULTS: The proposed algorithm helps to reduce noise in the estimated perfusion-parameter maps together with improving accuracy of the estimates. These conclusions are proved using a numerical phantom. In addition, experiments on real data show improved spatial consistency and readability of perfusion maps without considerable lowering of the quality of fit. CONCLUSION: The reliability of the DCE-MRI perfusion analysis using the tissue homogeneity model can be improved by employing spatial regularization. The proposed utilization of modern optimization techniques implies only slightly higher computational costs compared to the standard approach without spatial regularization.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a mozek $x diagnostické zobrazování $7 D001921
- 650 _2
- $a nádory mozku $x diagnostické zobrazování $7 D001932
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a kontrastní látky $x farmakologie $7 D003287
- 650 _2
- $a glioblastom $x diagnostické zobrazování $7 D005909
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 12
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a perfuze $7 D010477
- 650 _2
- $a permeabilita $7 D010539
- 650 _2
- $a fantomy radiodiagnostické $7 D019047
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a poměr signál - šum $7 D059629
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Rajmic, Pavel $u SPLab, Department of Telecommunications, FEEC, Brno University of Technology, Brno, Czech Republic.
- 700 1_
- $a Šorel, Michal $u The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic.
- 700 1_
- $a Mangová, Marie $u SPLab, Department of Telecommunications, FEEC, Brno University of Technology, Brno, Czech Republic.
- 700 1_
- $a Keunen, Olivier $u Norlux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.
- 700 1_
- $a Jiřík, Radovan $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic.
- 773 0_
- $w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 82, č. 6 (2019), s. 2257-2272
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31317577 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155205 $b ABA008
- 999 __
- $a ok $b bmc $g 1599590 $s 1116131
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 82 $c 6 $d 2257-2272 $e 20190717 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
- LZP __
- $a Pubmed-20201125