• Je něco špatně v tomto záznamu ?

PECTIN ACETYLESTERASE9 Affects the Transcriptome and Metabolome and Delays Aphid Feeding

KJ. Kloth, IN. Abreu, N. Delhomme, I. Petřík, C. Villard, C. Ström, F. Amini, O. Novák, T. Moritz, BR. Albrectsen,

. 2019 ; 181 (4) : 1704-1720. [pub] 20190924

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025461

The plant cell wall plays an important role in damage-associated molecular pattern-induced resistance to pathogens and herbivorous insects. Our current understanding of cell wall-mediated resistance is largely based on the degree of pectin methylesterification. However, little is known about the role of pectin acetylesterification in plant immunity. This study describes how one pectin-modifying enzyme, PECTIN ACETYLESTERASE 9 (PAE9), affects the Arabidopsis (Arabidopsis thaliana) transcriptome, secondary metabolome, and aphid performance. Electro-penetration graphs showed that Myzus persicae aphids established phloem feeding earlier on pae9 mutants. Whole-genome transcriptome analysis revealed a set of 56 differentially expressed genes (DEGs) between uninfested pae9-2 mutants and wild-type plants. The majority of the DEGs were enriched for biotic stress responses and down-regulated in the pae9-2 mutant, including PAD3 and IGMT2, involved in camalexin and indole glucosinolate biosynthesis, respectively. Relative quantification of more than 100 secondary metabolites revealed decreased levels of several compounds, including camalexin and oxylipins, in two independent pae9 mutants. In addition, absolute quantification of phytohormones showed that jasmonic acid (JA), jasmonoyl-Ile, salicylic acid, abscisic acid, and indole-3-acetic acid were compromised due to PAE9 loss of function. After aphid infestation, however, pae9 mutants increased their levels of camalexin, glucosinolates, and JA, and no long-term effects were observed on aphid fitness. Overall, these data show that PAE9 is required for constitutive up-regulation of defense-related compounds, but that it is not required for aphid-induced defenses. The signatures of phenolic antioxidants, phytoprostanes, and oxidative stress-related transcripts indicate that the processes underlying PAE9 activity involve oxidation-reduction reactions.

Department of Forest Genetics and Physiology Umeå Plant Science Centre Swedish Agriculture University S 90183 Umea Sweden

Department of Forest Genetics and Physiology Umeå Plant Science Centre Swedish Agriculture University S 90183 Umea Sweden Laboratory of Growth Regulators Centre of the Region Haná for Biotechnological and Agricultural Research Institute of Experimental Botany CAS and Faculty of Science of Palacký University Šlechtitelů 27 CZ 78371 Olomouc Czech Republic

Department of Plant Physiology Umeå Plant Science Centre Umeå University S 90187 Umea Sweden

Department of Plant Physiology Umeå Plant Science Centre Umeå University S 90187 Umea Sweden Department of Biology Faculty of Science Arak University Arak 38156 8 8349 Iran

Department of Plant Physiology Umeå Plant Science Centre Umeå University S 90187 Umea Sweden Laboratory of Entomology Wageningen University and Research 6700 AA Wageningen The Netherlands

Laboratory of Growth Regulators Centre of the Region Haná for Biotechnological and Agricultural Research Institute of Experimental Botany CAS and Faculty of Science of Palacký University Šlechtitelů 27 CZ 78371 Olomouc Czech Republic Department of Chemical Biology and Genetics Centre of the Region Haná for Biotechnological and Agricultural Research Faculty of Science Palacký University Šlechtitelů 27 CZ 78371 Olomouc Czech Republic

Unité de recherche Inserm 1121 Université de Lorraine INRA Laboratoire Agronomie et Environnement ENSAIA 2 Avenue Forêt de Haye 54518 Vandœuvre lès Nancy France

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025461
003      
CZ-PrNML
005      
20201222155214.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1104/pp.19.00635 $2 doi
035    __
$a (PubMed)31551361
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kloth, Karen J $u Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden karen.kloth@wur.nl. Laboratory of Entomology, Wageningen University and Research, 6700 AA Wageningen, The Netherlands.
245    10
$a PECTIN ACETYLESTERASE9 Affects the Transcriptome and Metabolome and Delays Aphid Feeding / $c KJ. Kloth, IN. Abreu, N. Delhomme, I. Petřík, C. Villard, C. Ström, F. Amini, O. Novák, T. Moritz, BR. Albrectsen,
520    9_
$a The plant cell wall plays an important role in damage-associated molecular pattern-induced resistance to pathogens and herbivorous insects. Our current understanding of cell wall-mediated resistance is largely based on the degree of pectin methylesterification. However, little is known about the role of pectin acetylesterification in plant immunity. This study describes how one pectin-modifying enzyme, PECTIN ACETYLESTERASE 9 (PAE9), affects the Arabidopsis (Arabidopsis thaliana) transcriptome, secondary metabolome, and aphid performance. Electro-penetration graphs showed that Myzus persicae aphids established phloem feeding earlier on pae9 mutants. Whole-genome transcriptome analysis revealed a set of 56 differentially expressed genes (DEGs) between uninfested pae9-2 mutants and wild-type plants. The majority of the DEGs were enriched for biotic stress responses and down-regulated in the pae9-2 mutant, including PAD3 and IGMT2, involved in camalexin and indole glucosinolate biosynthesis, respectively. Relative quantification of more than 100 secondary metabolites revealed decreased levels of several compounds, including camalexin and oxylipins, in two independent pae9 mutants. In addition, absolute quantification of phytohormones showed that jasmonic acid (JA), jasmonoyl-Ile, salicylic acid, abscisic acid, and indole-3-acetic acid were compromised due to PAE9 loss of function. After aphid infestation, however, pae9 mutants increased their levels of camalexin, glucosinolates, and JA, and no long-term effects were observed on aphid fitness. Overall, these data show that PAE9 is required for constitutive up-regulation of defense-related compounds, but that it is not required for aphid-induced defenses. The signatures of phenolic antioxidants, phytoprostanes, and oxidative stress-related transcripts indicate that the processes underlying PAE9 activity involve oxidation-reduction reactions.
650    _2
$a acetylesterasa $x metabolismus $7 D000115
650    _2
$a zvířata $7 D000818
650    _2
$a mšice $x fyziologie $7 D001042
650    _2
$a Arabidopsis $x genetika $x metabolismus $x parazitologie $7 D017360
650    _2
$a proteiny huseníčku $x metabolismus $7 D029681
650    _2
$a down regulace $x genetika $7 D015536
650    _2
$a regulace genové exprese u rostlin $7 D018506
650    _2
$a genové regulační sítě $7 D053263
650    _2
$a regulační geny $7 D005809
650    _2
$a glukosinoláty $x metabolismus $7 D005961
650    _2
$a býložravci $x fyziologie $7 D060434
650    _2
$a indoly $x metabolismus $7 D007211
650    _2
$a metabolom $x genetika $7 D055442
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a oxidační stres $7 D018384
650    _2
$a oxylipiny $x metabolismus $7 D054883
650    _2
$a regulátory růstu rostlin $x metabolismus $7 D010937
650    _2
$a sekundární metabolismus $7 D064210
650    _2
$a thiazoly $x metabolismus $7 D013844
650    _2
$a transkripční faktory $x metabolismus $7 D014157
650    _2
$a transkriptom $x genetika $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Abreu, Ilka N $u Department of Forest Genetics and Physiology, Umeå Plant Science Centre, Swedish Agriculture University, S-90183 Umea, Sweden.
700    1_
$a Delhomme, Nicolas $u Department of Forest Genetics and Physiology, Umeå Plant Science Centre, Swedish Agriculture University, S-90183 Umea, Sweden.
700    1_
$a Petřík, Ivan $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic. Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
700    1_
$a Villard, Cloé $u Unité de recherche Inserm 1121, Université de Lorraine-INRA Laboratoire Agronomie et Environnement ENSAIA, 2 Avenue Forêt de Haye, 54518 Vandœuvre-lès-Nancy, France.
700    1_
$a Ström, Cecilia $u Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
700    1_
$a Amini, Fariba $u Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden. Department of Biology, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.
700    1_
$a Novák, Ondřej $u Department of Forest Genetics and Physiology, Umeå Plant Science Centre, Swedish Agriculture University, S-90183 Umea, Sweden. Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
700    1_
$a Moritz, Thomas $u Department of Forest Genetics and Physiology, Umeå Plant Science Centre, Swedish Agriculture University, S-90183 Umea, Sweden.
700    1_
$a Albrectsen, Benedicte R $u Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
773    0_
$w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 181, č. 4 (2019), s. 1704-1720
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31551361 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155209 $b ABA008
999    __
$a ok $b bmc $g 1599606 $s 1116147
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 181 $c 4 $d 1704-1720 $e 20190924 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...