-
Je něco špatně v tomto záznamu ?
Sequential activation of STIM1 links Ca2+ with luminal domain unfolding
R. Schober, D. Bonhenry, V. Lunz, J. Zhu, A. Krizova, I. Frischauf, M. Fahrner, M. Zhang, L. Waldherr, T. Schmidt, I. Derler, PB. Stathopulos, C. Romanin, RH. Ettrich, R. Schindl,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- buněčná membrána metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- HEK293 buňky MeSH
- hydrofobní a hydrofilní interakce MeSH
- konfokální mikroskopie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- motivy EF-ruky MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- proteinové domény * MeSH
- rozbalení proteinů * MeSH
- simulace molekulární dynamiky * MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.
Gottfried Schatz Research Center Medical University of Graz A 8010 Graz Austria
Institute of Biophysics JKU Life Science Center Johannes Kepler University Linz A 4020 Linz Austria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025491
- 003
- CZ-PrNML
- 005
- 20201222155226.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1126/scisignal.aax3194 $2 doi
- 035 __
- $a (PubMed)31744929
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Schober, Romana $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria.
- 245 10
- $a Sequential activation of STIM1 links Ca2+ with luminal domain unfolding / $c R. Schober, D. Bonhenry, V. Lunz, J. Zhu, A. Krizova, I. Frischauf, M. Fahrner, M. Zhang, L. Waldherr, T. Schmidt, I. Derler, PB. Stathopulos, C. Romanin, RH. Ettrich, R. Schindl,
- 520 9_
- $a The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vápník $x metabolismus $7 D002118
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a motivy EF-ruky $7 D020832
- 650 _2
- $a endoplazmatické retikulum $x metabolismus $7 D004721
- 650 _2
- $a HEK293 buňky $7 D057809
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a nádorové proteiny $x chemie $x genetika $x metabolismus $7 D009363
- 650 _2
- $a protein ORAI1 $x chemie $x metabolismus $7 D000071740
- 650 12
- $a proteinové domény $7 D000072417
- 650 12
- $a rozbalení proteinů $7 D058767
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a protein STIM1 $x chemie $x genetika $x metabolismus $7 D000071737
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bonhenry, Daniel $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady CZ-373 33, Czech Republic.
- 700 1_
- $a Lunz, Victoria $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria.
- 700 1_
- $a Zhu, Jinhui $u Schulich Dentistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
- 700 1_
- $a Krizova, Adela $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria.
- 700 1_
- $a Frischauf, Irene $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria.
- 700 1_
- $a Fahrner, Marc $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria.
- 700 1_
- $a Zhang, MengQi $u Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada. Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
- 700 1_
- $a Waldherr, Linda $u Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
- 700 1_
- $a Schmidt, Tony $u Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
- 700 1_
- $a Derler, Isabella $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria.
- 700 1_
- $a Stathopulos, Peter B $u Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
- 700 1_
- $a Romanin, Christoph $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria.
- 700 1_
- $a Ettrich, Rüdiger H $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady CZ-373 33, Czech Republic. rainer.schindl@medunigraz.at rettrich@ularkin.org. College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA.
- 700 1_
- $a Schindl, Rainer $u Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria. rainer.schindl@medunigraz.at rettrich@ularkin.org. BioTechMed-Graz, A-8010 Graz, Austria.
- 773 0_
- $w MED00190083 $t Science signaling $x 1937-9145 $g Roč. 12, č. 608 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31744929 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155222 $b ABA008
- 999 __
- $a ok $b bmc $g 1599636 $s 1116177
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 12 $c 608 $e 20191119 $i 1937-9145 $m Science signaling $n Sci Signal $x MED00190083
- LZP __
- $a Pubmed-20201125