Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Development and validation of a novel risk stratification algorithm for relapsed multiple myeloma

R. Hájek, M. Delforge, MS. Raab, P. Schoen, L. DeCosta, I. Spicka, J. Radocha, L. Pour, S. Gonzalez-McQuire, W. Bouwmeester,

. 2019 ; 187 (4) : 447-458. [pub] 20190806

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025525

Multiple myeloma (MM) is a malignancy with varying survival outcomes and drivers of disease progression. Existing MM staging tools were developed using data from newly diagnosed patients. As patient characteristics and disease-related factors change between diagnosis and the initiation of second-line (2L) treatment, an unmet need exists for a tool that can evaluate risk of death at first relapse. We have developed a risk stratification algorithm (RSA) using data from patients with MM who were at 2L. Hazard ratios for independent predictors of overall survival (OS) were derived from a Cox models, and individual patient scores were calculated for total risk. K-adaptive partitioning for survival was used to stratify patients into groups based on their scores. Relative risk doubled with ascending risk group; median OSs for patients in group 1 (lowest risk)-4 (highest risk) were 61·6, 29·6, 14·2 and 5·9 months, respectively. Differences in OS between risk groups were significant. Similar stratification was observed when the RSA was applied to an external validation data set. In conclusion, we have developed a validated RSA that can quantify total risk, frailty risk and disease aggressiveness risk, and stratify patients with MM at 2L into groups with profoundly different survival expectations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025525
003      
CZ-PrNML
005      
20201222153938.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/bjh.16105 $2 doi
035    __
$a (PubMed)31388996
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Hájek, Roman $u Department of Haemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.
245    10
$a Development and validation of a novel risk stratification algorithm for relapsed multiple myeloma / $c R. Hájek, M. Delforge, MS. Raab, P. Schoen, L. DeCosta, I. Spicka, J. Radocha, L. Pour, S. Gonzalez-McQuire, W. Bouwmeester,
520    9_
$a Multiple myeloma (MM) is a malignancy with varying survival outcomes and drivers of disease progression. Existing MM staging tools were developed using data from newly diagnosed patients. As patient characteristics and disease-related factors change between diagnosis and the initiation of second-line (2L) treatment, an unmet need exists for a tool that can evaluate risk of death at first relapse. We have developed a risk stratification algorithm (RSA) using data from patients with MM who were at 2L. Hazard ratios for independent predictors of overall survival (OS) were derived from a Cox models, and individual patient scores were calculated for total risk. K-adaptive partitioning for survival was used to stratify patients into groups based on their scores. Relative risk doubled with ascending risk group; median OSs for patients in group 1 (lowest risk)-4 (highest risk) were 61·6, 29·6, 14·2 and 5·9 months, respectively. Differences in OS between risk groups were significant. Similar stratification was observed when the RSA was applied to an external validation data set. In conclusion, we have developed a validated RSA that can quantify total risk, frailty risk and disease aggressiveness risk, and stratify patients with MM at 2L into groups with profoundly different survival expectations.
650    _2
$a senioři $7 D000368
650    12
$a algoritmy $7 D000465
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a mnohočetný myelom $x diagnóza $x mortalita $x patologie $7 D009101
650    _2
$a recidiva $7 D012008
650    _2
$a registrace $7 D012042
650    _2
$a hodnocení rizik $x metody $7 D018570
650    _2
$a analýza přežití $7 D016019
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a validační studie $7 D023361
700    1_
$a Delforge, Michel $u Department of Haematology, University Hospital Leuven, Leuven, Belgium.
700    1_
$a Raab, Marc S $u Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany.
700    1_
$a Schoen, Paul $u Amgen Europe GmbH, Rotkreuz, Switzerland.
700    1_
$a DeCosta, Lucy $u Amgen Ltd, Uxbridge, UK.
700    1_
$a Spicka, Ivan $u 1st Medical Department - Clinical Department of Haematology, 1st Faculty of Medicine and General Teaching Hospital, Charles University, Prague, Hradec Králové, Czech Republic.
700    1_
$a Radocha, Jakub $u 4th Department of Medicine - Haematology, Charles University Hospital and Faculty of Medicine Hradec Králové, Hradec Králové, Czech Republic.
700    1_
$a Pour, Ludek $u Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Gonzalez-McQuire, Sebastian $u Amgen Europe GmbH, Rotkreuz, Switzerland.
700    1_
$a Bouwmeester, Walter $u Pharmerit International, Rotterdam, the Netherlands.
773    0_
$w MED00009374 $t British journal of haematology $x 1365-2141 $g Roč. 187, č. 4 (2019), s. 447-458
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31388996 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222153934 $b ABA008
999    __
$a ok $b bmc $g 1599670 $s 1116211
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 187 $c 4 $d 447-458 $e 20190806 $i 1365-2141 $m British journal of haematology $n Br J Haematol $x MED00009374
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...