-
Je něco špatně v tomto záznamu ?
DNA Quadruple Helices in Nanotechnology
JL. Mergny, D. Sen,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- nanotechnologie metody MeSH
- párování bází MeSH
- statická elektřina MeSH
- termodynamika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025851
- 003
- CZ-PrNML
- 005
- 20201222155509.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.chemrev.8b00629 $2 doi
- 035 __
- $a (PubMed)30605316
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Mergny, Jean-Louis $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China. ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France. Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic.
- 245 10
- $a DNA Quadruple Helices in Nanotechnology / $c JL. Mergny, D. Sen,
- 520 9_
- $a DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
- 650 _2
- $a párování bází $7 D020029
- 650 _2
- $a DNA $x chemie $7 D004247
- 650 12
- $a G-kvadruplexy $7 D054856
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nanotechnologie $x metody $7 D036103
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a statická elektřina $7 D055672
- 650 _2
- $a termodynamika $7 D013816
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Sen, Dipankar $u Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada. Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.
- 773 0_
- $w MED00002107 $t Chemical reviews $x 1520-6890 $g Roč. 119, č. 10 (2019), s. 6290-6325
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30605316 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155505 $b ABA008
- 999 __
- $a ok $b bmc $g 1599996 $s 1116537
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 119 $c 10 $d 6290-6325 $e 20190103 $i 1520-6890 $m Chemical reviews $n Chem Rev $x MED00002107
- LZP __
- $a Pubmed-20201125