• Je něco špatně v tomto záznamu ?

DNA Quadruple Helices in Nanotechnology

JL. Mergny, D. Sen,

. 2019 ; 119 (10) : 6290-6325. [pub] 20190103

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025851

DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025851
003      
CZ-PrNML
005      
20201222155509.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.chemrev.8b00629 $2 doi
035    __
$a (PubMed)30605316
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mergny, Jean-Louis $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China. ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France. Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic.
245    10
$a DNA Quadruple Helices in Nanotechnology / $c JL. Mergny, D. Sen,
520    9_
$a DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
650    _2
$a párování bází $7 D020029
650    _2
$a DNA $x chemie $7 D004247
650    12
$a G-kvadruplexy $7 D054856
650    _2
$a lidé $7 D006801
650    _2
$a nanotechnologie $x metody $7 D036103
650    _2
$a konformace nukleové kyseliny $7 D009690
650    _2
$a statická elektřina $7 D055672
650    _2
$a termodynamika $7 D013816
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Sen, Dipankar $u Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada. Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.
773    0_
$w MED00002107 $t Chemical reviews $x 1520-6890 $g Roč. 119, č. 10 (2019), s. 6290-6325
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30605316 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155505 $b ABA008
999    __
$a ok $b bmc $g 1599996 $s 1116537
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 119 $c 10 $d 6290-6325 $e 20190103 $i 1520-6890 $m Chemical reviews $n Chem Rev $x MED00002107
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...