• Je něco špatně v tomto záznamu ?

Analysis of the characteristics of phosphine production by anaerobic digestion based on microbial community dynamics, metabolic pathways, and isolation of the phosphate-reducing strain

Y. Fan, X. Niu, D. Zhang, Z. Lin, M. Fu, S. Zhou,

. 2021 ; 262 (-) : 128213. [pub] 20200903

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20027561

Although phosphine is ubiquitously present in anaerobic environments, little is known regarding the microbial community dynamics and metabolic pathways associated with phosphine formation in an anaerobic digestion system. This study investigated the production of phosphine in anaerobic digestion, with results indicating that phosphine production mainly occurred during logarithmic microbial growth. Dehydrogenase and hydrogen promoted the production of phosphine, with a maximum phosphine concentration of 300 mg/m3. The abundance of Ruminococcaceae and Escherichia was observed to promote phosphine generation. The analysis of metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the MetaCyc pathway database revealed the highest relative abundance of replication and repair in genetic information processing; further, the cofactor, prosthetic group, electron carrier, and vitamin biosynthesis were observed to be closely related to phosphine formation. A phylogenetic tree was reconstructed based on the neighbor-joining method. The results indicated the clear evolutionary position of the isolated Pseudescherichia sp. SFM4 strain, adjacent to Escherichia, with a stable phosphate-reducing ability for a maximum phosphine concentration of 26 mg/m3. The response surface experiment indicated that the initial optimal conditions for phosphine production by SFM4 could be achieved with nitrogen, carbon, and phosphorus loads of 6.17, 300, and 10 mg/L, respectively, at pH 7.47. These results provide comprehensive insights into the dynamic changes in the microbial structure, isolated single bacterial strain, and metabolic pathways associated with phosphine formation. They also provide information on the molecular biology associated with phosphorus recycling.

000      
00000naa a2200000 a 4500
001      
bmc20027561
003      
CZ-PrNML
005      
20210114152102.0
007      
ta
008      
210105s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.chemosphere.2020.128213 $2 doi
035    __
$a (PubMed)33182078
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Fan, Yimin $u School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. Electronic address: 2725610181@qq.com.
245    10
$a Analysis of the characteristics of phosphine production by anaerobic digestion based on microbial community dynamics, metabolic pathways, and isolation of the phosphate-reducing strain / $c Y. Fan, X. Niu, D. Zhang, Z. Lin, M. Fu, S. Zhou,
520    9_
$a Although phosphine is ubiquitously present in anaerobic environments, little is known regarding the microbial community dynamics and metabolic pathways associated with phosphine formation in an anaerobic digestion system. This study investigated the production of phosphine in anaerobic digestion, with results indicating that phosphine production mainly occurred during logarithmic microbial growth. Dehydrogenase and hydrogen promoted the production of phosphine, with a maximum phosphine concentration of 300 mg/m3. The abundance of Ruminococcaceae and Escherichia was observed to promote phosphine generation. The analysis of metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the MetaCyc pathway database revealed the highest relative abundance of replication and repair in genetic information processing; further, the cofactor, prosthetic group, electron carrier, and vitamin biosynthesis were observed to be closely related to phosphine formation. A phylogenetic tree was reconstructed based on the neighbor-joining method. The results indicated the clear evolutionary position of the isolated Pseudescherichia sp. SFM4 strain, adjacent to Escherichia, with a stable phosphate-reducing ability for a maximum phosphine concentration of 26 mg/m3. The response surface experiment indicated that the initial optimal conditions for phosphine production by SFM4 could be achieved with nitrogen, carbon, and phosphorus loads of 6.17, 300, and 10 mg/L, respectively, at pH 7.47. These results provide comprehensive insights into the dynamic changes in the microbial structure, isolated single bacterial strain, and metabolic pathways associated with phosphine formation. They also provide information on the molecular biology associated with phosphorus recycling.
650    _2
$a anaerobióza $7 D000693
650    _2
$a bioreaktory $x mikrobiologie $7 D019149
650    _2
$a Clostridiales $x genetika $x metabolismus $7 D000068016
650    _2
$a Escherichia $x genetika $x metabolismus $7 D004925
650    _2
$a vodík $x metabolismus $7 D006859
650    12
$a metabolické sítě a dráhy $x genetika $7 D053858
650    12
$a mikrobiota $7 D064307
650    _2
$a dusík $x metabolismus $7 D009584
650    _2
$a fosfáty $x metabolismus $7 D010710
650    _2
$a fosfiny $x analýza $x metabolismus $7 D010720
650    _2
$a fosfor $x metabolismus $7 D010758
650    _2
$a fylogeneze $7 D010802
650    _2
$a odpadní vody $x mikrobiologie $7 D012722
655    _2
$a časopisecké články $7 D016428
700    1_
$a Niu, Xiaojun $u School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China; Sino-Singapore International Joint Research Institute, Guangzhou, 510700, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China. Electronic address: xjniu@scut.edu.cn.
700    1_
$a Zhang, Dongqing $u School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China. Electronic address: dqzhang3377@outlook.com.
700    1_
$a Lin, Zhang $u School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. Electronic address: zlin@scut.edu.cn.
700    1_
$a Fu, Mingli $u School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. Electronic address: mlfu@scut.edu.cn.
700    1_
$a Zhou, Shaoqi $u School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China. Electronic address: 2975742087@qq.com.
773    0_
$w MED00002124 $t Chemosphere $x 1879-1298 $g Roč. 262, č. - (2021), s. 128213
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33182078 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114152100 $b ABA008
999    __
$a ok $b bmc $g 1607896 $s 1118741
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 262 $c - $d 128213 $e 20200903 $i 1879-1298 $m Chemosphere $n Chemosphere $x MED00002124
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...