-
Je něco špatně v tomto záznamu ?
Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone
DH. Bae, DJR. Lane, AR. Siafakas, R. Sutak, J. Paluncic, MLH. Huang, PJ. Jansson, YS. Rahmanto, DR. Richardson,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buněčné linie MeSH
- dioxygenasy genetika metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- down regulace MeSH
- inhibitory proteasomu farmakologie MeSH
- leupeptiny MeSH
- lidé MeSH
- membránový potenciál mitochondrií MeSH
- molekulární chaperony účinky léků metabolismus MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- vazebná místa MeSH
- železo metabolismus MeSH
- zinek metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The iron-containing protein, acireductone dioxygenase 1 (ADI1), is a dioxygenase important for polyamine synthesis and proliferation. Using differential proteomics, the studies herein demonstrated that ADI1 was significantly down-regulated by cellular iron depletion. This is important, since ADI1 contains a non-heme, iron-binding site critical for its activity. Examination of multiple human cell-types demonstrated a significant decrease in ADI1 mRNA and protein after incubation with iron chelators. The decrease in ADI1 after iron depletion was reversible upon incubation of cells with the iron salt, ferric ammonium citrate (FAC). A significant decrease in ADI1 mRNA levels was observed after 14 h of iron depletion. In contrast, the chelator-mediated reduction in ADI1 protein occurred earlier after 10 h of iron depletion, suggesting additional post-transcriptional regulation. The proteasome inhibitor, MG-132, prevented the iron chelator-mediated decrease in ADI1 expression, while the lysosomotropic agent, chloroquine, had no effect. These results suggest an iron-dependent, proteasome-mediated, degradation mechanism. Poly r(C)-binding protein (PCBPs) 1 and 2 act as iron delivery chaperones to other iron-containing dioxygenases and were shown herein for the first time to be regulated by iron levels. Silencing of PCBP1, but not PCBP2, led to loss of ADI1 expression. Confocal microscopy co-localization studies and proximity ligation assays both demonstrated decreased interaction of ADI1 with PCBP1 and PCBP2 under conditions of iron depletion using DFO. These data indicate PCBP1 and PCBP2 interact with ADI1, but only PCBP1 plays a role in ADI1 expression. In fact, PCBP2 appeared to play an accessory role, being involved as a potential co-chaperone.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20027756
- 003
- CZ-PrNML
- 005
- 20210114152323.0
- 007
- ta
- 008
- 210105s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbadis.2020.165844 $2 doi
- 035 __
- $a (PubMed)32480040
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Bae, Dong-Hun $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
- 245 10
- $a Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone / $c DH. Bae, DJR. Lane, AR. Siafakas, R. Sutak, J. Paluncic, MLH. Huang, PJ. Jansson, YS. Rahmanto, DR. Richardson,
- 520 9_
- $a The iron-containing protein, acireductone dioxygenase 1 (ADI1), is a dioxygenase important for polyamine synthesis and proliferation. Using differential proteomics, the studies herein demonstrated that ADI1 was significantly down-regulated by cellular iron depletion. This is important, since ADI1 contains a non-heme, iron-binding site critical for its activity. Examination of multiple human cell-types demonstrated a significant decrease in ADI1 mRNA and protein after incubation with iron chelators. The decrease in ADI1 after iron depletion was reversible upon incubation of cells with the iron salt, ferric ammonium citrate (FAC). A significant decrease in ADI1 mRNA levels was observed after 14 h of iron depletion. In contrast, the chelator-mediated reduction in ADI1 protein occurred earlier after 10 h of iron depletion, suggesting additional post-transcriptional regulation. The proteasome inhibitor, MG-132, prevented the iron chelator-mediated decrease in ADI1 expression, while the lysosomotropic agent, chloroquine, had no effect. These results suggest an iron-dependent, proteasome-mediated, degradation mechanism. Poly r(C)-binding protein (PCBPs) 1 and 2 act as iron delivery chaperones to other iron-containing dioxygenases and were shown herein for the first time to be regulated by iron levels. Silencing of PCBP1, but not PCBP2, led to loss of ADI1 expression. Confocal microscopy co-localization studies and proximity ligation assays both demonstrated decreased interaction of ADI1 with PCBP1 and PCBP2 under conditions of iron depletion using DFO. These data indicate PCBP1 and PCBP2 interact with ADI1, but only PCBP1 plays a role in ADI1 expression. In fact, PCBP2 appeared to play an accessory role, being involved as a potential co-chaperone.
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a DNA vazebné proteiny $x genetika $x metabolismus $7 D004268
- 650 _2
- $a dioxygenasy $x genetika $x metabolismus $7 D049308
- 650 _2
- $a down regulace $7 D015536
- 650 _2
- $a regulace genové exprese $x účinky léků $7 D005786
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a železo $x metabolismus $7 D007501
- 650 _2
- $a leupeptiny $7 D007976
- 650 _2
- $a membránový potenciál mitochondrií $7 D053078
- 650 _2
- $a molekulární chaperony $x účinky léků $x metabolismus $7 D018832
- 650 _2
- $a inhibitory proteasomu $x farmakologie $7 D061988
- 650 _2
- $a proteiny vázající RNA $x genetika $x metabolismus $7 D016601
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a zinek $x metabolismus $7 D015032
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lane, Darius J R $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia.
- 700 1_
- $a Siafakas, Aritee R $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
- 700 1_
- $a Sutak, Robert $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; BIOCEV - Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic.
- 700 1_
- $a Paluncic, Jasmina $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
- 700 1_
- $a Huang, Michael L H $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
- 700 1_
- $a Jansson, Patric J $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Cancer Drug Resistance Program, University of Sydney, Sydney, New South Wales 2006, Australia.
- 700 1_
- $a Rahmanto, Yohan Suryo $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
- 700 1_
- $a Richardson, Des R $u Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia. Electronic address: d.richardson@griffith.edu.au.
- 773 0_
- $w MED00000539 $t Biochimica et biophysica acta. Molecular basis of disease $x 1879-260X $g Roč. 1866, č. 10 (2020), s. 165844
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32480040 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114152321 $b ABA008
- 999 __
- $a ok $b bmc $g 1608091 $s 1118936
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 1866 $c 10 $d 165844 $e 20200529 $i 1879-260X $m Biochimica et biophysica acta. Molecular basis of disease $n Biochim Biophys Acta $x MED00000539
- LZP __
- $a Pubmed-20210105