Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Simple capacitor-switch model of excitatory and inhibitory neuron with all parts biologically explained allows input fire pattern dependent chaotic oscillations

P. Cejnar, O. Vyšata, J. Kukal, M. Beránek, M. Vališ, A. Procházka,

. 2020 ; 10 (1) : 7353. [pub] 20200430

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028230

Due to known information processing capabilities of the brain, neurons are modeled at many different levels. Circuit theory is also often used to describe the function of neurons, especially in complex multi-compartment models, but when used for simple models, there is no subsequent biological justification of used parts. We propose a new single-compartment model of excitatory and inhibitory neuron, the capacitor-switch model of excitatory and inhibitory neuron, as an extension of the existing integrate-and-fire model, preserving the signal properties of more complex multi-compartment models. The correspondence to existing structures in the neuronal cell is then discussed for each part of the model. We demonstrate that a few such inter-connected model units are capable of acting as a chaotic oscillator dependent on fire patterns of the input signal providing a complex deterministic and specific response through the output signal. The well-known necessary conditions for constructing a chaotic oscillator are met for our presented model. The capacitor-switch model provides a biologically-plausible concept of chaotic oscillator based on neuronal cells.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028230
003      
CZ-PrNML
005      
20210114153259.0
007      
ta
008      
210105s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-020-63834-7 $2 doi
035    __
$a (PubMed)32355185
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Cejnar, Pavel $u Department of Computing and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czech Republic. pavel.cejnar@vscht.cz.
245    10
$a Simple capacitor-switch model of excitatory and inhibitory neuron with all parts biologically explained allows input fire pattern dependent chaotic oscillations / $c P. Cejnar, O. Vyšata, J. Kukal, M. Beránek, M. Vališ, A. Procházka,
520    9_
$a Due to known information processing capabilities of the brain, neurons are modeled at many different levels. Circuit theory is also often used to describe the function of neurons, especially in complex multi-compartment models, but when used for simple models, there is no subsequent biological justification of used parts. We propose a new single-compartment model of excitatory and inhibitory neuron, the capacitor-switch model of excitatory and inhibitory neuron, as an extension of the existing integrate-and-fire model, preserving the signal properties of more complex multi-compartment models. The correspondence to existing structures in the neuronal cell is then discussed for each part of the model. We demonstrate that a few such inter-connected model units are capable of acting as a chaotic oscillator dependent on fire patterns of the input signal providing a complex deterministic and specific response through the output signal. The well-known necessary conditions for constructing a chaotic oscillator are met for our presented model. The capacitor-switch model provides a biologically-plausible concept of chaotic oscillator based on neuronal cells.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a zvířata $7 D000818
650    _2
$a mozek $x metabolismus $7 D001921
650    _2
$a modely neurologické $7 D008959
650    _2
$a neurony $x metabolismus $7 D009474
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vyšata, Oldřich $u Department of Computing and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czech Republic. Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
700    1_
$a Kukal, Jaromír $u Department of Computing and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czech Republic.
700    1_
$a Beránek, Martin $u Independent researcher, Uppsala, Sweden.
700    1_
$a Vališ, Martin $u Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
700    1_
$a Procházka, Aleš $u Department of Computing and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czech Republic. ales.prochazka@vscht.cz. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic. ales.prochazka@vscht.cz.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 10, č. 1 (2020), s. 7353
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32355185 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114153256 $b ABA008
999    __
$a ok $b bmc $g 1608565 $s 1119410
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 10 $c 1 $d 7353 $e 20200430 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...